
Solvers Principles and Architecture
(SPA)

Part 1

Anatomy of SAT Solvers

Master Sciences Informatique (Sif)
September, 2019

Rennes

Khalil Ghorbal

khalil.ghorbal@inria.fr

K. Ghorbal (INRIA) 1 SIF M2 1 / 58

Outline

1 Propositional Logic

2 CNF Transformation

3 DPLL-based Algorithms
Unit Propagation
Branching and Learning

4 Conclusion

5 Reduction Examples

K. Ghorbal (INRIA) 1 SIF M2 1 / 58

Logic in a Nut Shell

Formally, a logic is a pair of syntax and semantics.

Syntax

• Alphabet: set of symbols

• Expressions: sequences of symbols

• Rules: identifying well-formed expressions

Semantics

• Meaning: what is meant by well-formed expressions

• Rules: infer the meaning from subexpressions

K. Ghorbal (INRIA) 2 SIF M2 2 / 58

Alphabet
Syntax

Alphabet
(left parenthesis

) right parenthesis

¬ Negation

∧ Conjunction

∨ Disjunction (inclusive)

←− Implication

←→ Equivalence

0 Propositional symbol “False”

1 Propositional symbol “True”

si ith propositional symbol

K. Ghorbal (INRIA) 3 SIF M2 3 / 58

Expressions
Syntax

Expression
Sequence of symbols from the alphabet.

〈(, a1,∧, a2,)〉 (a1 ∧ a2)

〈(,),∨, a1,¬, a2〉 () ∨ a1¬a3

We want to further restrict the allowed combinations.

K. Ghorbal (INRIA) 4 SIF M2 4 / 58

Well-Formed Formulas
Syntax

Well-formed formulas (wff) are defined inductively

S : the set of expressions with a single propositional symbol
S = {0, 1, s1, s2, . . . }

W : the set of wffs is freely generated from S as follows

w ::= s | (w) | ¬w | w ∧ w | w ∨ w | w −→ w | w ←→ w

So far we only manipulated symbols or wooden pieces!

K. Ghorbal (INRIA) 5 SIF M2 5 / 58

Semantics with Truth Table

One can interpret all expressions in W over the set {0, 1} by giving an
interpretation of the basic constructors that generate W .
A symbol s can be either 0 or 1.

s ¬
0 1
1 0

s1 s2 ∧
0 0 0
0 1 0
1 0 0
1 1 1

s1 s2 ∨
0 0 0
0 1 1
1 0 1
1 1 1

s1 s2 →
0 0 1
0 1 1
1 0 0
1 1 1

K. Ghorbal (INRIA) 6 SIF M2 6 / 58

Semantics with Truth Table

One can interpret all expressions in W over the set {0, 1} by giving an
interpretation of the basic constructors that generate W .
A symbol s can be either 0 or 1.

s ¬
0 1
1 0

s1 s2 ∧
0 0 0
0 1 0
1 0 0
1 1 1

s1 s2 ∨
0 0 0
0 1 1
1 0 1
1 1 1

s1 s2 →
0 0 1
0 1 1
1 0 0
1 1 1

K. Ghorbal (INRIA) 6 SIF M2 6 / 58

Interpretation Domain
Semantics

Intuition
Given a context, that is a truth value for each propositional symbol, we
can determine the truth value of any wff in our context.

Boolean Algebra

• Field structure: Z /2Z = B = {0, 1}
• ”+”: 0 is the identity, 1 is its own inverse: 1 + 1 = 0

• ”×”: standard multiplication operator, where 1 is the identity element

K. Ghorbal (INRIA) 7 SIF M2 7 / 58

Transfer Functions
Semantics

• context: σ : S → B. A valuation of all propositional symbols

• σ satisfies σ(0) = 0 and σ(1) = 1

• Define JKσ : W → B
• JKσ is well-defined since W is freely generated

Semantics of the Transfer Functions

JsKσ = σ(s)

J¬wKσ = 1 + JwKσ
Jw1 ∧ w2Kσ = Jw1Kσ × Jw2Kσ
Jw1 ∨ w2Kσ = Jw1Kσ + Jw2Kσ + Jw1Kσ × Jw2Kσ

Jw1 → w2Kσ = 1 + Jw1Kσ + Jw1Kσ × Jw2Kσ
Jw1 ←→ w2Kσ = 1 + Jw1Kσ + Jw2Kσ

K. Ghorbal (INRIA) 8 SIF M2 8 / 58

Definitions

• σ: context, valuation, truth assignment

• σ satisfies w if and only if JwKσ = 1

• w is satisfiable if there exists σ such that σ satisfies w

• w is unsatisfiable if there is no σ such that σ satisfies w :

∀σ. (JwKσ = 0) .

Example:

• (s1 ∨ s2) ∧ (¬s1 ∨ ¬s2) is satisfiable

• (s1 ∨ s2) ∧ (¬s1 ∨ ¬s2) ∧ (s1 ↔ s2) is unsatisfiable

K. Ghorbal (INRIA) 9 SIF M2 9 / 58

Definitions

• σ: context, valuation, truth assignment

• σ satisfies w if and only if JwKσ = 1

• w is satisfiable if there exists σ such that σ satisfies w

• w is unsatisfiable if there is no σ such that σ satisfies w :

∀σ. (JwKσ = 0) .

Example:

• (s1 ∨ s2) ∧ (¬s1 ∨ ¬s2) is satisfiable

• (s1 ∨ s2) ∧ (¬s1 ∨ ¬s2) ∧ (s1 ↔ s2) is unsatisfiable

K. Ghorbal (INRIA) 9 SIF M2 9 / 58

Definitions

• σ: context, valuation, truth assignment

• σ satisfies w if and only if JwKσ = 1

• w is satisfiable if there exists σ such that σ satisfies w

• w is unsatisfiable if there is no σ such that σ satisfies w :

∀σ. (JwKσ = 0) .

Example:

• (s1 ∨ s2) ∧ (¬s1 ∨ ¬s2) is satisfiable

• (s1 ∨ s2) ∧ (¬s1 ∨ ¬s2) ∧ (s1 ↔ s2) is unsatisfiable

K. Ghorbal (INRIA) 9 SIF M2 9 / 58

Definitions

• σ: context, valuation, truth assignment

• σ satisfies w if and only if JwKσ = 1

• w is satisfiable if there exists σ such that σ satisfies w

• w is unsatisfiable if there is no σ such that σ satisfies w :

∀σ. (JwKσ = 0) .

Example:

• (s1 ∨ s2) ∧ (¬s1 ∨ ¬s2) is satisfiable

• (s1 ∨ s2) ∧ (¬s1 ∨ ¬s2) ∧ (s1 ↔ s2) is unsatisfiable

K. Ghorbal (INRIA) 9 SIF M2 9 / 58

Definitions

• σ: context, valuation, truth assignment

• σ satisfies w if and only if JwKσ = 1

• w is satisfiable if there exists σ such that σ satisfies w

• w is unsatisfiable if there is no σ such that σ satisfies w :

∀σ. (JwKσ = 0) .

Example:

• (s1 ∨ s2) ∧ (¬s1 ∨ ¬s2) is satisfiable

• (s1 ∨ s2) ∧ (¬s1 ∨ ¬s2) ∧ (s1 ↔ s2) is unsatisfiable

K. Ghorbal (INRIA) 9 SIF M2 9 / 58

Implications as Satisfiability

Tautological Implication (wi are wffs)

w1, . . . ,wn |= w if and only if ∀σ. (J∧iwiKσ = 1 −→ JwKσ = 1)

Every truth assignment that satisfies all wi satisfies necessarily w

Definitions

• |= w (or 1 |= w): w is a tautology or w is valid

• w1 ∼ w2: w1 |= w2 and w2 |= w1 (tautological equivalence)

• e.g. s1 → s2 ∼ ¬s1 ∨ s2

K. Ghorbal (INRIA) 10 SIF M2 10 / 58

Implications as Satisfiability

Tautological Implication (wi are wffs)

w1, . . . ,wn |= w if and only if ∀σ. (J∧iwiKσ = 1 −→ JwKσ = 1)

Every truth assignment that satisfies all wi satisfies necessarily w

Definitions

• |= w (or 1 |= w): w is a tautology or w is valid

• w1 ∼ w2: w1 |= w2 and w2 |= w1 (tautological equivalence)

• e.g. s1 → s2 ∼ ¬s1 ∨ s2

K. Ghorbal (INRIA) 10 SIF M2 10 / 58

Implications as Satisfiability

Tautological Implication (wi are wffs)

w1, . . . ,wn |= w if and only if ∀σ. (J∧iwiKσ = 1 −→ JwKσ = 1)

Every truth assignment that satisfies all wi satisfies necessarily w

Definitions

• |= w (or 1 |= w): w is a tautology or w is valid

• w1 ∼ w2: w1 |= w2 and w2 |= w1 (tautological equivalence)

• e.g. s1 → s2 ∼ ¬s1 ∨ s2

K. Ghorbal (INRIA) 10 SIF M2 10 / 58

Implications as Satisfiability

Tautological Implication (wi are wffs)

w1, . . . ,wn |= w if and only if ∀σ. (J∧iwiKσ = 1 −→ JwKσ = 1)

Every truth assignment that satisfies all wi satisfies necessarily w

Definitions

• |= w (or 1 |= w): w is a tautology or w is valid

• w1 ∼ w2: w1 |= w2 and w2 |= w1 (tautological equivalence)

• e.g. s1 → s2 ∼ ¬s1 ∨ s2

K. Ghorbal (INRIA) 10 SIF M2 10 / 58

Proving Theorem with SAT

Tautological Implication as Satisfiability Problem

w1, . . . ,wn |= w if and only if ∧i wi ∧ ¬w is unsatisfiable

Example

• s1, s1 → s2 |= s2 iff s1 ∧ (s1 → s2) ∧ ¬s2 is unsat.

• s,¬s |= (s ∧ ¬s) iff s ∧ ¬s ∧ ¬(s ∧ ¬s) is unsat

K. Ghorbal (INRIA) 11 SIF M2 11 / 58

Proving Theorem with SAT

Tautological Implication as Satisfiability Problem

w1, . . . ,wn |= w if and only if ∧i wi ∧ ¬w is unsatisfiable

Example

• s1, s1 → s2 |= s2 iff s1 ∧ (s1 → s2) ∧ ¬s2 is unsat.

• s,¬s |= (s ∧ ¬s) iff s ∧ ¬s ∧ ¬(s ∧ ¬s) is unsat

K. Ghorbal (INRIA) 11 SIF M2 11 / 58

Proving Theorem with SAT

Tautological Implication as Satisfiability Problem

w1, . . . ,wn |= w if and only if ∧i wi ∧ ¬w is unsatisfiable

Example

• s1, s1 → s2 |= s2 iff s1 ∧ (s1 → s2) ∧ ¬s2 is unsat.

• s,¬s |= (s ∧ ¬s) iff s ∧ ¬s ∧ ¬(s ∧ ¬s) is unsat

K. Ghorbal (INRIA) 11 SIF M2 11 / 58

Equivalence versus EquiSatisfiability

Recall (Tautological) Equivalence

w1 ∼ w2 if and only if ∀σ. (Jw1Kσ = 1←→ Jw2Kσ = 1)

Equisatisfiability

w1 ∼SAT w2 if and only if (∃σ. Jw1Kσ = 1)←→ (∃σ. Jw2Kσ = 1)

Equisatisfiability does not imply tautological equivalence!

• w1 := s1 ∧ (s1 ↔ s2) and w2 := s1

• w1 ∼SAT w2 but w1 6∼ w2

K. Ghorbal (INRIA) 12 SIF M2 12 / 58

Equivalence versus EquiSatisfiability

Recall (Tautological) Equivalence

w1 ∼ w2 if and only if ∀σ. (Jw1Kσ = 1←→ Jw2Kσ = 1)

Equisatisfiability

w1 ∼SAT w2 if and only if (∃σ. Jw1Kσ = 1)←→ (∃σ. Jw2Kσ = 1)

Equisatisfiability does not imply tautological equivalence!

• w1 := s1 ∧ (s1 ↔ s2) and w2 := s1

• w1 ∼SAT w2 but w1 6∼ w2

K. Ghorbal (INRIA) 12 SIF M2 12 / 58

Equivalence versus EquiSatisfiability

Recall (Tautological) Equivalence

w1 ∼ w2 if and only if ∀σ. (Jw1Kσ = 1←→ Jw2Kσ = 1)

Equisatisfiability

w1 ∼SAT w2 if and only if (∃σ. Jw1Kσ = 1)←→ (∃σ. Jw2Kσ = 1)

Equisatisfiability does not imply tautological equivalence!

• w1 := s1 ∧ (s1 ↔ s2) and w2 := s1

• w1 ∼SAT w2 but w1 6∼ w2

K. Ghorbal (INRIA) 12 SIF M2 12 / 58

Outline

1 Propositional Logic

2 CNF Transformation

3 DPLL-based Algorithms
Unit Propagation
Branching and Learning

4 Conclusion

5 Reduction Examples

K. Ghorbal (INRIA) 12 SIF M2 12 / 58

Definitions

• Literal: propositional symbol (atomic expression) or its negation

• Clause: disjunction of one or more literals

• Positive Occurrence: if the symbol occurs unnegated in a clause

• Negative Occurrence: if the symbol occurs negated in a clause

K. Ghorbal (INRIA) 13 SIF M2 13 / 58

Definitions

• Literal: propositional symbol (atomic expression) or its negation

• Clause: disjunction of one or more literals

• Positive Occurrence: if the symbol occurs unnegated in a clause

• Negative Occurrence: if the symbol occurs negated in a clause

K. Ghorbal (INRIA) 13 SIF M2 13 / 58

Conjunctive Normal Form (CNF)

An expression w is in CNF if and only if it has the form

w =
∧
i

∨
j

`ij

• Each `ij is a literal

• Thus, a CNF is a conjunction of clauses

Example: (s1 ∨ ¬s3)︸ ︷︷ ︸
c1

∧ (¬s2 ∨ s3 ∨ s4)︸ ︷︷ ︸
c2

• 4 variable symbols: s1, s2, s3, and s4

• clause c1 (resp. c2) has 2 (resp. 3) literals

• s3 is negative in c1 and positive in c2

K. Ghorbal (INRIA) 14 SIF M2 14 / 58

Converting to CNF
Equivalent CNF is Exponential

Converting a wff w to an equivalent formula in CNF using De Morgan’s
Laws and distributivity may increase the number of logical operations
(Boolean gates) exponentially.

Example

• w1 := (s1 ∧ s2) ∨ (s3 ∧ s4), by distributivity

• w1 ∼ w2 := (s1 ∨ s3) ∧ (s1 ∨ s4) ∧ (s2 ∨ s3) ∧ (s2 ∨ s4) (22 clauses)

• w1 := (s1 ∧ s2) ∨ (s3 ∧ s4) ∨ (s5 ∧ s6) · · · ∨ (sn ∧ sn+1)

• Now w1 ∼ w2, and w2 in CNF, but w2 has 2n−1 clauses!

• We seek to avoid such exponential cost for the CNF reduction

K. Ghorbal (INRIA) 15 SIF M2 15 / 58

Converting to CNF
Equivalent CNF is Exponential

Converting a wff w to an equivalent formula in CNF using De Morgan’s
Laws and distributivity may increase the number of logical operations
(Boolean gates) exponentially.

Example

• w1 := (s1 ∧ s2) ∨ (s3 ∧ s4), by distributivity

• w1 ∼ w2 := (s1 ∨ s3) ∧ (s1 ∨ s4) ∧ (s2 ∨ s3) ∧ (s2 ∨ s4) (22 clauses)

• w1 := (s1 ∧ s2) ∨ (s3 ∧ s4) ∨ (s5 ∧ s6) · · · ∨ (sn ∧ sn+1)

• Now w1 ∼ w2, and w2 in CNF, but w2 has 2n−1 clauses!

• We seek to avoid such exponential cost for the CNF reduction

K. Ghorbal (INRIA) 15 SIF M2 15 / 58

Converting to CNF
Equivalent CNF is Exponential

Converting a wff w to an equivalent formula in CNF using De Morgan’s
Laws and distributivity may increase the number of logical operations
(Boolean gates) exponentially.

Example

• w1 := (s1 ∧ s2) ∨ (s3 ∧ s4), by distributivity

• w1 ∼ w2 := (s1 ∨ s3) ∧ (s1 ∨ s4) ∧ (s2 ∨ s3) ∧ (s2 ∨ s4) (22 clauses)

• w1 := (s1 ∧ s2) ∨ (s3 ∧ s4) ∨ (s5 ∧ s6) · · · ∨ (sn ∧ sn+1)

• Now w1 ∼ w2, and w2 in CNF, but w2 has 2n−1 clauses!

• We seek to avoid such exponential cost for the CNF reduction

K. Ghorbal (INRIA) 15 SIF M2 15 / 58

Converting to CNF
Equivalent CNF is Exponential

Converting a wff w to an equivalent formula in CNF using De Morgan’s
Laws and distributivity may increase the number of logical operations
(Boolean gates) exponentially.

Example

• w1 := (s1 ∧ s2) ∨ (s3 ∧ s4), by distributivity

• w1 ∼ w2 := (s1 ∨ s3) ∧ (s1 ∨ s4) ∧ (s2 ∨ s3) ∧ (s2 ∨ s4) (22 clauses)

• w1 := (s1 ∧ s2) ∨ (s3 ∧ s4) ∨ (s5 ∧ s6) · · · ∨ (sn ∧ sn+1)

• Now w1 ∼ w2, and w2 in CNF, but w2 has 2n−1 clauses!

• We seek to avoid such exponential cost for the CNF reduction

K. Ghorbal (INRIA) 15 SIF M2 15 / 58

Converting to CNF
Tseytin Transformation [Tseytin 1970]

Trick: Converting an expression by adding new propositional variables and
substituting for nested operations. We avoid the exponential cost at the
price of losing the (tautological) equivalence.

Example
w := (s1 ∧ s2)︸ ︷︷ ︸

p1

∨ (s3 ∧ s4)︸ ︷︷ ︸
p2︸ ︷︷ ︸

p3

• p1 ↔ (s1 ∧ s2)

• p2 ↔ (s3 ∧ s4)

• p3 ↔ p1 ∨ p2

• w ∼SAT (p1 ↔ (s1 ∧ s2)) ∧ (p2 ↔ (s3 ∧ s4)) ∧ (p3 ↔ p1 ∨ p2) ∧ p3

K. Ghorbal (INRIA) 16 SIF M2 16 / 58

Converting to CNF
Tseytin Transformation [Tseytin 1970]

Trick: Converting an expression by adding new propositional variables and
substituting for nested operations. We avoid the exponential cost at the
price of losing the (tautological) equivalence.

Example
w := (s1 ∧ s2)︸ ︷︷ ︸

p1

∨ (s3 ∧ s4)︸ ︷︷ ︸
p2︸ ︷︷ ︸

p3

• p1 ↔ (s1 ∧ s2)

• p2 ↔ (s3 ∧ s4)

• p3 ↔ p1 ∨ p2

• w ∼SAT (p1 ↔ (s1 ∧ s2)) ∧ (p2 ↔ (s3 ∧ s4)) ∧ (p3 ↔ p1 ∨ p2) ∧ p3

K. Ghorbal (INRIA) 16 SIF M2 16 / 58

Converting to CNF
Tseytin Transformation [Tseytin 1970]

• p ↔ (`1 ∧ `2) ∼ (¬p ∨ `1) ∧ (¬p ∨ `2) ∧ (¬`1 ∨ ¬`2 ∨ p) (CNF)

• p ↔ (`1 ∨ `2) ∼ ¬p ↔ (¬`1 ∧ ¬`2)

• p ↔ ` ∼ p ↔ ` ∧ 1

• Each operator (gate) adds at most 3 clauses.

• An expression with m operators becomes a CNF

• with at most 3m + 1, O(m), clauses, and
• an additional m propositional variables

• Linear increase in size

K. Ghorbal (INRIA) 17 SIF M2 17 / 58

Converting to CNF
Tseytin Transformation [Tseytin 1970]

• p ↔ (`1 ∧ `2) ∼ (¬p ∨ `1) ∧ (¬p ∨ `2) ∧ (¬`1 ∨ ¬`2 ∨ p) (CNF)

• p ↔ (`1 ∨ `2) ∼ ¬p ↔ (¬`1 ∧ ¬`2)

• p ↔ ` ∼ p ↔ ` ∧ 1

• Each operator (gate) adds at most 3 clauses.

• An expression with m operators becomes a CNF

• with at most 3m + 1, O(m), clauses, and
• an additional m propositional variables

• Linear increase in size

K. Ghorbal (INRIA) 17 SIF M2 17 / 58

Converting to CNF
Tseytin Transformation [Tseytin 1970]

• p ↔ (`1 ∧ `2) ∼ (¬p ∨ `1) ∧ (¬p ∨ `2) ∧ (¬`1 ∨ ¬`2 ∨ p) (CNF)

• p ↔ (`1 ∨ `2) ∼ ¬p ↔ (¬`1 ∧ ¬`2)

• p ↔ ` ∼ p ↔ ` ∧ 1

• Each operator (gate) adds at most 3 clauses.

• An expression with m operators becomes a CNF

• with at most 3m + 1, O(m), clauses, and
• an additional m propositional variables

• Linear increase in size

K. Ghorbal (INRIA) 17 SIF M2 17 / 58

Converting to CNF
Tseytin Transformation [Tseytin 1970]

• p ↔ (`1 ∧ `2) ∼ (¬p ∨ `1) ∧ (¬p ∨ `2) ∧ (¬`1 ∨ ¬`2 ∨ p) (CNF)

• p ↔ (`1 ∨ `2) ∼ ¬p ↔ (¬`1 ∧ ¬`2)

• p ↔ ` ∼ p ↔ ` ∧ 1

• Each operator (gate) adds at most 3 clauses.

• An expression with m operators becomes a CNF

• with at most 3m + 1, O(m), clauses, and
• an additional m propositional variables

• Linear increase in size

K. Ghorbal (INRIA) 17 SIF M2 17 / 58

DiMaCS Standard

• Each propositional variable is represented by a positive integer

• A negative integer refers to negative occurrences

• Clauses are given as sequences of integers separated by spaces

• A 0 terminates the clause

Example:

• (s1 ∨ ¬s3) ∧ (¬s2 ∨ s3 ∨ s4)

• 1 -3 0 -2 3 4 0

K. Ghorbal (INRIA) 18 SIF M2 18 / 58

DiMaCS Standard

• Each propositional variable is represented by a positive integer

• A negative integer refers to negative occurrences

• Clauses are given as sequences of integers separated by spaces

• A 0 terminates the clause

Example:

• (s1 ∨ ¬s3) ∧ (¬s2 ∨ s3 ∨ s4)

• 1 -3 0 -2 3 4 0

K. Ghorbal (INRIA) 18 SIF M2 18 / 58

Outline

1 Propositional Logic

2 CNF Transformation

3 DPLL-based Algorithms
Unit Propagation
Branching and Learning

4 Conclusion

5 Reduction Examples

K. Ghorbal (INRIA) 18 SIF M2 18 / 58

EquiSAT CNF Conversion

Tseytin Transformation

Let w be a wff expression (a.k.a. Boolean function) of size n. Then, using
Tseytin Transformation, w can be converted, in polynomial time, into an
equisatisfiable expression w ′ in CNF.

So, one may assume that we already have a CNF to begin with.

K. Ghorbal (INRIA) 19 SIF M2 19 / 58

SAT Decision Problem

Given a well-formed formula w as an input, if there exists a σ that
satisfies w return SAT (with σ), otherwise return UNSAT.

K. Ghorbal (INRIA) 20 SIF M2 20 / 58

Brute Force Algorithm
Example

s1 ∧ (s2 ∨ ¬s1) ∧ (s3 ∨ ¬s2)

s1 s2 s3 s1 ∧ ((s2 ∨ ¬s1) ∧ (s3 ∨ ¬s2))

(1) 0 0 0 0 1 1 1 1 1
(2) 0 0 1 0 1 1 1 1 1
(3) 0 1 0 0 1 1 0 0 0
(4) 0 1 1 0 1 1 1 1 0
(5) 1 0 0 0 0 0 0 1 1
(6) 1 0 1 0 0 0 0 1 1
(7) 1 1 0 0 1 0 0 0 0
(8) 1 1 1 1 1 0 1 1 0

K. Ghorbal (INRIA) 21 SIF M2 21 / 58

Brute Force Algorithm
Example

s1 ∧ (s2 ∨ ¬s1) ∧ (s3 ∨ ¬s2)

s1 s2 s3 s1 ∧ ((s2 ∨ ¬s1) ∧ (s3 ∨ ¬s2))

(1) 0 0 0 0 1 1 1 1 1

(2) 0 0 1 0 1 1 1 1 1
(3) 0 1 0 0 1 1 0 0 0
(4) 0 1 1 0 1 1 1 1 0
(5) 1 0 0 0 0 0 0 1 1
(6) 1 0 1 0 0 0 0 1 1
(7) 1 1 0 0 1 0 0 0 0
(8) 1 1 1 1 1 0 1 1 0

K. Ghorbal (INRIA) 21 SIF M2 21 / 58

Brute Force Algorithm
Example

s1 ∧ (s2 ∨ ¬s1) ∧ (s3 ∨ ¬s2)

s1 s2 s3 s1 ∧ ((s2 ∨ ¬s1) ∧ (s3 ∨ ¬s2))

(1) 0 0 0 0 1 1 1 1 1
(2) 0 0 1 0 1 1 1 1 1
(3) 0 1 0 0 1 1 0 0 0
(4) 0 1 1 0 1 1 1 1 0
(5) 1 0 0 0 0 0 0 1 1
(6) 1 0 1 0 0 0 0 1 1
(7) 1 1 0 0 1 0 0 0 0

(8) 1 1 1 1 1 0 1 1 0

K. Ghorbal (INRIA) 21 SIF M2 21 / 58

Brute Force Algorithm
Example

s1 ∧ (s2 ∨ ¬s1) ∧ (s3 ∨ ¬s2)

s1 s2 s3 s1 ∧ ((s2 ∨ ¬s1) ∧ (s3 ∨ ¬s2))

(1) 0 0 0 0 1 1 1 1 1
(2) 0 0 1 0 1 1 1 1 1
(3) 0 1 0 0 1 1 0 0 0
(4) 0 1 1 0 1 1 1 1 0
(5) 1 0 0 0 0 0 0 1 1
(6) 1 0 1 0 0 0 0 1 1
(7) 1 1 0 0 1 0 0 0 0
(8) 1 1 1 1 1 0 1 1 0

K. Ghorbal (INRIA) 21 SIF M2 21 / 58

SAT Facts

• Brute force algorithm: exponential complexity:

• 2n cases for n propositional symbol

• SAT is the first problem to be proven to be NP-complete [Cook 1971]

• SAT solves any decision problem in NP (that is why we call it
”complete”)

• No known Polynomial time algorithm for solving SAT (otherwise
P=NP)

• Yet, modern SAT Solvers are arguably efficient, why?

K. Ghorbal (INRIA) 22 SIF M2 22 / 58

SAT Facts

• Brute force algorithm: exponential complexity:

• 2n cases for n propositional symbol

• SAT is the first problem to be proven to be NP-complete [Cook 1971]

• SAT solves any decision problem in NP (that is why we call it
”complete”)

• No known Polynomial time algorithm for solving SAT (otherwise
P=NP)

• Yet, modern SAT Solvers are arguably efficient, why?

K. Ghorbal (INRIA) 22 SIF M2 22 / 58

SAT Facts

• Brute force algorithm: exponential complexity:

• 2n cases for n propositional symbol

• SAT is the first problem to be proven to be NP-complete [Cook 1971]

• SAT solves any decision problem in NP (that is why we call it
”complete”)

• No known Polynomial time algorithm for solving SAT (otherwise
P=NP)

• Yet, modern SAT Solvers are arguably efficient, why?

K. Ghorbal (INRIA) 22 SIF M2 22 / 58

SAT Facts

• Brute force algorithm: exponential complexity:

• 2n cases for n propositional symbol

• SAT is the first problem to be proven to be NP-complete [Cook 1971]

• SAT solves any decision problem in NP (that is why we call it
”complete”)

• No known Polynomial time algorithm for solving SAT (otherwise
P=NP)

• Yet, modern SAT Solvers are arguably efficient, why?

K. Ghorbal (INRIA) 22 SIF M2 22 / 58

SAT Facts

• Brute force algorithm: exponential complexity:

• 2n cases for n propositional symbol

• SAT is the first problem to be proven to be NP-complete [Cook 1971]

• SAT solves any decision problem in NP (that is why we call it
”complete”)

• No known Polynomial time algorithm for solving SAT (otherwise
P=NP)

• Yet, modern SAT Solvers are arguably efficient, why?

K. Ghorbal (INRIA) 22 SIF M2 22 / 58

DP Algorithm
Davis, Putnam, 1960

Satisfiability-Preserving Transformations

• Pure literal rule or affirmative-negative rule

• Unit propagation or 1-literal rule

• Resolution rule or rule for eliminating literals (atomic expressions)

DP Algorithm
Iteratively apply the rules till reducing the problem to a unique clause

• if the clause has the form s ∧ ¬s the problem is unsat

• otherwise, the problem is sat

K. Ghorbal (INRIA) 23 SIF M2 23 / 58

DP Algorithm
Davis, Putnam, 1960

Satisfiability-Preserving Transformations

• Pure literal rule or affirmative-negative rule

• Unit propagation or 1-literal rule

• Resolution rule or rule for eliminating literals (atomic expressions)

DP Algorithm
Iteratively apply the rules till reducing the problem to a unique clause

• if the clause has the form s ∧ ¬s the problem is unsat

• otherwise, the problem is sat

K. Ghorbal (INRIA) 23 SIF M2 23 / 58

Pure Literal Rule

Pure literal i.e. appears only positively or only negatively, ` say

Delete all clauses containing that literal

• A clause containing ` has the form ` ∨ w

• (` ∨ w1) ∧ · · · (` ∨ wm) ∧ w ′ ∼SAT w ′ (w ′ has no ` in it)

û Augment σ such that J`Kσ = 1

K. Ghorbal (INRIA) 24 SIF M2 24 / 58

Example of Preprocessing with Pure Literal Rule

(1 and 7)

1 ∨ 2

1 ∨ 3 ∨ 8

2̄ ∨ 3̄ ∨ 4

4̄ ∨ 5 ∨ 7

4̄ ∨ 6 ∨ 8

5̄ ∨ 6̄

7 ∨ 8̄

7 ∨ 9̄ ∨ 10

(2̄)

1 ∨ 2

1 ∨ 3 ∨ 8

2̄ ∨ 3̄ ∨ 4

4̄ ∨ 5 ∨ 7

4̄ ∨ 6 ∨ 8

5̄ ∨ 6̄

7 ∨ 8̄

7 ∨ 9̄ ∨ 10

(4̄ and 5̄)

1 ∨ 2

1 ∨ 3 ∨ 8

2̄ ∨ 3̄ ∨ 4

4̄ ∨ 5 ∨ 7

4̄ ∨ 6 ∨ 8

5̄ ∨ 6̄

7 ∨ 8̄

7 ∨ 9̄ ∨ 10

û SAT! σ = {1, 7, 2̄, 4̄, 5̄} (with anything for {6, 8})

K. Ghorbal (INRIA) 25 SIF M2 25 / 58

Unit Propagation

Unit clause is a clause with only one literal, ` say
A CNF containing a unit clause ` has the form

` ∧ (` ∨ w1) ∧ (¬` ∨ w2) ∧ w3

Remove all the clauses containing `

• ` ∧ (` ∨ w1) ∧ · · · ∧ (` ∨ wm) ∧ w ′ ∼SAT w ′

Remove all instances of ¬` from all the clauses

• ` ∧ (¬` ∨ w1) ∧ · · · ∧ (¬` ∨ wm) ∧ w ′ ∼SAT w1 ∧ · · · ∧ wm ∧ w ′

û Augment σ such that J`Kσ = 1

K. Ghorbal (INRIA) 26 SIF M2 26 / 58

Resolution Rule

If ` or its negation do not appear in the wff w , then

(` ∨ a) ∧ (¬` ∨ b) ∧ w ∼SAT (a ∨ b)︸ ︷︷ ︸
resolvent

∧w

Generalizing to several clauses:

∧
i

(` ∨ ai) ∧
∧
j

(¬` ∨ bj) ∧ w ∼SAT

∧
i

ai ∨
∧
j

bj

 ∧ w

Converting back to a CNF∧
i

ai ∨
∧
j

bj

 ∧ w ∼

∧
i

∧
j

(ai ∨ bj)

 ∧ w

K. Ghorbal (INRIA) 27 SIF M2 27 / 58

Resolution Rule

If ` or its negation do not appear in the wff w , then

(` ∨ a) ∧ (¬` ∨ b) ∧ w ∼SAT (a ∨ b)︸ ︷︷ ︸
resolvent

∧w

Generalizing to several clauses:

∧
i

(` ∨ ai) ∧
∧
j

(¬` ∨ bj) ∧ w ∼SAT

∧
i

ai ∨
∧
j

bj

 ∧ w

Converting back to a CNF∧
i

ai ∨
∧
j

bj

 ∧ w ∼

∧
i

∧
j

(ai ∨ bj)

 ∧ w

K. Ghorbal (INRIA) 27 SIF M2 27 / 58

Resolution Rule

If ` or its negation do not appear in the wff w , then

(` ∨ a) ∧ (¬` ∨ b) ∧ w ∼SAT (a ∨ b)︸ ︷︷ ︸
resolvent

∧w

Generalizing to several clauses:

∧
i

(` ∨ ai) ∧
∧
j

(¬` ∨ bj) ∧ w ∼SAT

∧
i

ai ∨
∧
j

bj

 ∧ w

Converting back to a CNF∧
i

ai ∨
∧
j

bj

 ∧ w ∼

∧
i

∧
j

(ai ∨ bj)

 ∧ w

K. Ghorbal (INRIA) 27 SIF M2 27 / 58

Resolution Rule (cont’d)

To summarize, if ` or its negation do not appear in the wff w , then

r∧
i=1

(` ∨ ai) ∧
s∧

j=1

(¬` ∨ bj) ∧ w ∼SAT

 r∧
i=1

s∧
j=1

(ai ∨ bj)

 ∧ w

• Before applying the resolution rule the CNF had r + s clauses
containing ` or its negation

• After applying the rule, the so obtained CNF has rs clauses ...

• and ` is resolved (eliminated, simplified).

• Thus, no explicit assignment is required for `.

K. Ghorbal (INRIA) 28 SIF M2 28 / 58

DP Algorithm: Practical Considerations
Davis, Putnam, 1960

Satisfiability-Preserving Transformations

• Pure literal rule or affirmative-negative rule

• Unit propagation or 1-literal rule

• Resolution rule or rule for eliminating literals

In practice

• Pure literal rule is expensive to detect dynamically

• Unit propagation consumes the most significant runtime

• Resolution rule can exhaust rapidly the available memory

K. Ghorbal (INRIA) 29 SIF M2 29 / 58

DP Algorithm: Practical Considerations
Davis, Putnam, 1960

Satisfiability-Preserving Transformations

• Pure literal rule or affirmative-negative rule

• Unit propagation or 1-literal rule

• Resolution rule or rule for eliminating literals

In practice

• Pure literal rule is expensive to detect dynamically

• Unit propagation consumes the most significant runtime

• Resolution rule can exhaust rapidly the available memory

K. Ghorbal (INRIA) 29 SIF M2 29 / 58

Outline

1 Propositional Logic

2 CNF Transformation

3 DPLL-based Algorithms
Unit Propagation
Branching and Learning

4 Conclusion

5 Reduction Examples

K. Ghorbal (INRIA) 29 SIF M2 29 / 58

Example
Counter-Based Algorithm for BCP

C1 := x ∨ y , C2 := ¬x ∨ y ∨ ¬z , C3 := x ∨ z , C4 := x ∨ ¬z

Suppose σ = {z}, that is z is assigned 1.
Let #C := (C (` = 0),C (` = 1)), then

#C1 = (0, 0), #C2 = (1, 0), #C3 = (0, 1), #C4 = (1, 0),

The pair of lists associated with the variable x is

Px := {C1,C3,C4}, Nx := {C2}

Observe that C3(` = 1) = 1, so C3 is already satisfied by σ.

K. Ghorbal (INRIA) 30 SIF M2 30 / 58

Example (cont’d)
Counter-Based Algorithm for BCP

If x is assigned to 0, σ becomes {z , x̄}, and the counters #Ci become

#C1 = (1, 0), #C2 = (1, 1), #C3 = (1, 1), #C4 = (2, 0)

• C2(` = 1) = 1: C2 becomes satisfied.

• C4(` = 0) = 2 = |C4|: C4 becomes conflicting.

If x is assigned to 1, σ becomes {z , x}, and the counters #Ci become

#C1 = (0, 1), #C2 = (2, 0), #C3 = (0, 2), #C4 = (1, 1)

• C1(` = 1) = C4(` = 1) = 1: C1 and C4 become satisfied.

• C2(` = 0) = 2 = −1 + 3 = −1 + |C2|: C2 becomes a unit clause.

K. Ghorbal (INRIA) 31 SIF M2 31 / 58

Counter-Based Algorithm for BCP

• Denote by |C | the total number of literals in a clause C

• Each clause C has two counters:
• C (` = 0) := #` such that J`Kσ = 0
• C (` = 1) := #` such that J`Kσ = 1

• Each variable s has two lists of clauses:
• Ps : set of clauses where the variable occurs positively
• Ns : set of clauses where the variable occurs negatively

If s is assigned, C (` = 0) and C (` = 1) for all C in Ps ∪ Ns are updated

• If C (` = 0) = |C | then C is a conflicting clause (more later)

• If C (` = 0) = −1 + |C | and C (` = 1) = 0 then it is a unit clause

K. Ghorbal (INRIA) 32 SIF M2 32 / 58

Counter-Based Algorithm for BCP

• Denote by |C | the total number of literals in a clause C

• Each clause C has two counters:
• C (` = 0) := #` such that J`Kσ = 0
• C (` = 1) := #` such that J`Kσ = 1

• Each variable s has two lists of clauses:
• Ps : set of clauses where the variable occurs positively
• Ns : set of clauses where the variable occurs negatively

If s is assigned, C (` = 0) and C (` = 1) for all C in Ps ∪ Ns are updated

• If C (` = 0) = |C | then C is a conflicting clause (more later)

• If C (` = 0) = −1 + |C | and C (` = 1) = 0 then it is a unit clause

K. Ghorbal (INRIA) 32 SIF M2 32 / 58

Counter-Based Algorithm for BCP

• Denote by |C | the total number of literals in a clause C

• Each clause C has two counters:
• C (` = 0) := #` such that J`Kσ = 0
• C (` = 1) := #` such that J`Kσ = 1

• Each variable s has two lists of clauses:
• Ps : set of clauses where the variable occurs positively
• Ns : set of clauses where the variable occurs negatively

If s is assigned, C (` = 0) and C (` = 1) for all C in Ps ∪ Ns are updated

• If C (` = 0) = |C | then C is a conflicting clause (more later)

• If C (` = 0) = −1 + |C | and C (` = 1) = 0 then it is a unit clause

K. Ghorbal (INRIA) 32 SIF M2 32 / 58

Counter-Based Algorithm for BCP

• Denote by |C | the total number of literals in a clause C

• Each clause C has two counters:
• C (` = 0) := #` such that J`Kσ = 0
• C (` = 1) := #` such that J`Kσ = 1

• Each variable s has two lists of clauses:
• Ps : set of clauses where the variable occurs positively
• Ns : set of clauses where the variable occurs negatively

If s is assigned, C (` = 0) and C (` = 1) for all C in Ps ∪ Ns are updated

• If C (` = 0) = |C | then C is a conflicting clause (more later)

• If C (` = 0) = −1 + |C | and C (` = 1) = 0 then it is a unit clause

K. Ghorbal (INRIA) 32 SIF M2 32 / 58

Counter-Based Algorithm for BCP

• Denote by |C | the total number of literals in a clause C

• Each clause C has two counters:
• C (` = 0) := #` such that J`Kσ = 0
• C (` = 1) := #` such that J`Kσ = 1

• Each variable s has two lists of clauses:
• Ps : set of clauses where the variable occurs positively
• Ns : set of clauses where the variable occurs negatively

If s is assigned, C (` = 0) and C (` = 1) for all C in Ps ∪ Ns are updated

• If C (` = 0) = |C | then C is a conflicting clause (more later)

• If C (` = 0) = −1 + |C | and C (` = 1) = 0 then it is a unit clause

K. Ghorbal (INRIA) 32 SIF M2 32 / 58

Counter-Based Algorithm for BCP

• Denote by |C | the total number of literals in a clause C

• Each clause C has two counters:
• C (` = 0) := #` such that J`Kσ = 0
• C (` = 1) := #` such that J`Kσ = 1

• Each variable s has two lists of clauses:
• Ps : set of clauses where the variable occurs positively
• Ns : set of clauses where the variable occurs negatively

If s is assigned, C (` = 0) and C (` = 1) for all C in Ps ∪ Ns are updated

• If C (` = 0) = |C | then C is a conflicting clause (more later)

• If C (` = 0) = −1 + |C | and C (` = 1) = 0 then it is a unit clause

K. Ghorbal (INRIA) 32 SIF M2 32 / 58

Counter-Based Algorithm for BCP

• Denote by |C | the total number of literals in a clause C

• Each clause C has two counters:
• C (` = 0) := #` such that J`Kσ = 0
• C (` = 1) := #` such that J`Kσ = 1

• Each variable s has two lists of clauses:
• Ps : set of clauses where the variable occurs positively
• Ns : set of clauses where the variable occurs negatively

If s is assigned, C (` = 0) and C (` = 1) for all C in Ps ∪ Ns are updated

• If C (` = 0) = |C | then C is a conflicting clause (more later)

• If C (` = 0) = −1 + |C | and C (` = 1) = 0 then it is a unit clause

K. Ghorbal (INRIA) 32 SIF M2 32 / 58

Counter-Based Algorithm for BCP

• Denote by |C | the total number of literals in a clause C

• Each clause C has two counters:
• C (` = 0) := #` such that J`Kσ = 0
• C (` = 1) := #` such that J`Kσ = 1

• Each variable s has two lists of clauses:
• Ps : set of clauses where the variable occurs positively
• Ns : set of clauses where the variable occurs negatively

If s is assigned, C (` = 0) and C (` = 1) for all C in Ps ∪ Ns are updated

• If C (` = 0) = |C | then C is a conflicting clause (more later)

• If C (` = 0) = −1 + |C | and C (` = 1) = 0 then it is a unit clause

K. Ghorbal (INRIA) 32 SIF M2 32 / 58

Boolean Constraint Propagation (BCP)

• Unit propagation is a typical instance of BCP

• Consumes the most significant runtime of modern solvers

Several heuristics proved efficient

• Counter-based (GRASP) [Marques-Silva, Sakallah, 1996]

• Head/Tail lists (SATO) [Zhang, Stickel, 1996]

• 2-literal watching (Chaff) [Moskewicz et al. 2001]

K. Ghorbal (INRIA) 33 SIF M2 33 / 58

Outline

1 Propositional Logic

2 CNF Transformation

3 DPLL-based Algorithms
Unit Propagation
Branching and Learning

4 Conclusion

5 Reduction Examples

K. Ghorbal (INRIA) 33 SIF M2 33 / 58

Splitting (or Branching) Rule
Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic
expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule

1 Simplify by Unit Propagation and Pure Literals

2 Recursively pick a variable s (which one?)

3 Test if (w ∧ s) is SAT

4 Otherwise return the result for (w ∧ ¬s)

K. Ghorbal (INRIA) 34 SIF M2 34 / 58

Splitting (or Branching) Rule
Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic
expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule

1 Simplify by Unit Propagation and Pure Literals

2 Recursively pick a variable s (which one?)

3 Test if (w ∧ s) is SAT

4 Otherwise return the result for (w ∧ ¬s)

K. Ghorbal (INRIA) 34 SIF M2 34 / 58

Splitting (or Branching) Rule
Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic
expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule

1 Simplify by Unit Propagation and Pure Literals

2 Recursively pick a variable s (which one?)

3 Test if (w ∧ s) is SAT

4 Otherwise return the result for (w ∧ ¬s)

K. Ghorbal (INRIA) 34 SIF M2 34 / 58

Splitting (or Branching) Rule
Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic
expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule

1 Simplify by Unit Propagation and Pure Literals

2 Recursively pick a variable s (which one?)

3 Test if (w ∧ s) is SAT

4 Otherwise return the result for (w ∧ ¬s)

K. Ghorbal (INRIA) 34 SIF M2 34 / 58

Splitting (or Branching) Rule
Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic
expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule

1 Simplify by Unit Propagation and Pure Literals

2 Recursively pick a variable s (which one?)

3 Test if (w ∧ s) is SAT

4 Otherwise return the result for (w ∧ ¬s)

K. Ghorbal (INRIA) 34 SIF M2 34 / 58

Splitting (or Branching) Rule
Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic
expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule

1 Simplify by Unit Propagation and Pure Literals

2 Recursively pick a variable s (which one?)

3 Test if (w ∧ s) is SAT

4 Otherwise return the result for (w ∧ ¬s)

K. Ghorbal (INRIA) 34 SIF M2 34 / 58

Example

w = c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6

c1 = (x5 ∨ x6)

c2 = (x1 ∨ x7 ∨ ¬x2)

c3 = (x1 ∨ ¬x3)

c4 = (x2 ∨ x3 ∨ x4)

c5 = (¬x4 ∨ ¬x5)

c6 = (x8 ∨ ¬x4 ∨ ¬x6)

K. Ghorbal (INRIA) 35 SIF M2 35 / 58

Greedy Algorithm

Count the number of unresolved clause for each variable

x1 : (2), x2 : (2), x3 : (2), x4 : (3), x5 : (2), x6 : (2), x7 : (1), x8 : (1)

Branch with the variable having the largest number (here x4)
x4 = 1@1 (i.e. x4 set to 1 at decision level 1)

• c4 becomes resolved

• by UP (c5), x5 = 0@1,

• by UP (c1), x6 = 1@1,

• by UP (c6), x8 = 1@1

Count the number of unresolved clause for each remaining variable (c2 and
c3)

x1 : (2), x2 : (1), x3 : (1), x7 : (1)

x1 = 1@2

• c2 and c3 become resolved

• The algorithm halts with SAT, σ = {4, 5̄, 6, 8, 1}
K. Ghorbal (INRIA) 36 SIF M2 36 / 58

Search Graph (Example)

K. Ghorbal (INRIA) 37 SIF M2 37 / 58

Branching Heuristics

Which variable to branch with ?
Greedy Algorithms

• Exploit the statistics of the clause database

• Estimate the branching effect on each variable (cost function)
• Ex1: Generate the largest number of implications
• Ex2: Satisfy most clauses

Heuristcs

• Maximum occurences on minimum sized clauses (MOM)

• Literal Count Heuristcs

Dynamic Largest Individual Sum (DLIS) [Marques-Silva, 1999]

• Counts the number of unresolved clauses for each free variable

• Chooses the variable with the largest number

• State-dependent (recalculated each time before branching)

K. Ghorbal (INRIA) 38 SIF M2 38 / 58

Conflicts and Backtracking

Conflicting Clause: a clause with all its literals assigned to 0

Solving conflicts:

• If a conflict is detected at decision level @d , the decision variable of
that level is flipped before starting the UP again.

• If a conflict is again detected, the algorithm goes to decision level
@(d − 1) and so on.

• If decision level 0 reached, return UNSAT

• Essentially a Depth First Search technique.

Problem: several conflicts could be caused by the same assignement made
at an early decision level.

The algorithm gets stuck in some sort of “local minimum” with an
important number of conflicts.

K. Ghorbal (INRIA) 39 SIF M2 39 / 58

Conflict-Driven Clause Learning (CDCL)
Marques-Silva,Sakallah,1996 and Bayardo,Schrag,1997

Modern SAT solvers learns the conflicting clauses and attempt to
jumpback to an early root of the conflict.

Two graphs are built iteratively

• Search graph (as the one we have already seen)

• Implication graph

K. Ghorbal (INRIA) 40 SIF M2 40 / 58

Example

w = c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6

c1 = (x5 ∨ x6)

c2 = (x1 ∨ x7 ∨ ¬x2)

c3 = (x1 ∨ ¬x3)

c4 = (x2 ∨ x3 ∨ x4)

c5 = (¬x4 ∨ ¬x5)

c6 = (x8 ∨ ¬x4 ∨ ¬x6)

Assume the following decisions have been made:

x8 = 0@2, x7 = 0@3, x1 = 0@5.

K. Ghorbal (INRIA) 41 SIF M2 41 / 58

Implication Graph (Example)

K. Ghorbal (INRIA) 42 SIF M2 42 / 58

Learning Clauses from a Conflict

• Let φ := ¬x1 ∧ ¬x7 ∧ ¬x8

• w ∧ φ is UNSAT

• Thus, w |= ¬φ (Tautological implication)

• Therefore, w ∼ w ∧ ¬φ
• ¬φ is a learned clause

Several clauses could be learned by seperating the sources from the
conflict in the implication graph

φ1 := ¬x4 ∨ x8 φ2 := ¬x4 ∨ x6

For instance, by adding φ1 as a new clause to w , with respect to the
decision x8 = 0@2, x4 will be forced to 0 (instead of 1 which would lead
inevitably to a conflict according to the implication graph).

K. Ghorbal (INRIA) 43 SIF M2 43 / 58

Backjump

In our example, one can jump back to three decision levels: 2, 3 and 5
(the current one).

Unit Implication Point strategy (used in in Chaff)

• One would want to backtrack to a decision that immediately exploits
the learned clause to fix an additional variable without necessarily
changing that decision.

• For instance, by learning φ1 and backtracking to depth 2 (as the
earliest decision involved in φ), x4 will be set to 0 by UP.

K. Ghorbal (INRIA) 44 SIF M2 44 / 58

CDCL: Learn and Backjump

Learn

• Add a new clause to avoid reaching the same conflict again

• Not unique in general (heuristics)

Backjump

• Jump to a past decision that caused the conflict

• (not necessarily the latest like in backtracking)

• Not unique in general (heuristics)

K. Ghorbal (INRIA) 45 SIF M2 45 / 58

CDCL: Forget and Restart
Mostly used in SMT Solvers

Forget

• When too much clauses are learned

• heuristics: forget those not frequently used by literal propagations

Restart

• If stuck, restart from the beginning (extreme backjumping)

• Keep the learned clauses

K. Ghorbal (INRIA) 46 SIF M2 46 / 58

Variable State Independent Decaying Sum
VSIDS. [Moskewicz et al., 2001]

In modern solvers, branching heuristics exploit the learned clauses:

• Keeps two scores for each variable

• (# of pos occurences, # of neg occurences)

• Increases the score of a variable by a constant if it appears in a
learned conflicting-clause

• Periodically, all the scores are divided by a constant

• Branch with the variable with the highest combined score

û Cheap to maintain (State Independent)

û Captures the recently active variables

K. Ghorbal (INRIA) 47 SIF M2 47 / 58

Outline

1 Propositional Logic

2 CNF Transformation

3 DPLL-based Algorithms
Unit Propagation
Branching and Learning

4 Conclusion

5 Reduction Examples

K. Ghorbal (INRIA) 47 SIF M2 47 / 58

DPLL-CDCL Modern Decision Procedures
Zhang, Malik, 2002

s t a t u s = p r e p r o c e s s () ;
i f (s t a t u s !=UNKNOWN) return s t a t u s ;
whi le (t r u e) {

d e c i d e n e x t b r a n c h () ;
whi le (t r u e) {

s t a t u s = deduce () ;
i f (s t a t u s == CONFLICT) {

b l e v e l = a n a l y z e c o n f l i c t () ;
i f (b l e v e l == 0)

return UNSATISFIABLE ;
e l s e b a c k t r a c k (b l e v e l) ;

} e l s e i f (s t a t u s == SATISFIABLE)
return SATISFIABLE ;

e l s e break ;
}

}

K. Ghorbal (INRIA) 48 SIF M2 48 / 58

Anatomy of Modern Sat Solvers
[Katebi et al., 2011]

352 H. Katebi, K.A. Sakallah, and J.P. Marques-Silva

500
600
700
800
900

1000

T
im

e
(s

)

0
100
200
300
400
500
600
700
800
900

1000

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 T

im
e

(s
)

Instances

Fig. 3. The run time distribution of the four major CDCL features (data points for
timed-out runs are not shown to reduce clutter). These run times are averages over 10
runs per benchmark, and account for time-outs using maximum likelihood estimation
(MLE) [32]. With a 90% confidence level, 71% of those averages are accurate to within
25%. Higher accuracy can always be obtained by increasing the number of runs.

in which they are disabled against the CDCL configuration in which they
are all enabled. Using this measure, we see that enabling CL, VSIDS, 2WL,
and RST leads, respectively, to the solution of 4231, 2136, 659, and 415
additional instances.

– Configurations ¬VSIDS and CDCL differ only in the branching heuristic
and allow a direct comparison between DLIS and VSIDS. The number of
instances solved with VSIDS (9068 in configuration CDCL) is significantly
higher than the number solved with DLIS (6932 in configuration ¬VSIDS).
Two factors contribute to this performance advantage: a) the much lower
overhead of VSIDS compared to DLIS since it only updates activities when-
ever conflicts arise whereas DLIS updates literal counters every time a literal
is assigned/unassigned, b) the selection of literals occurring in the most re-
cent conflicts as opposed to literals occurring the most in unresolved clauses.

– Configurations ¬2WL and CDCL differ only in the implementation of BCP
and allow a direct comparison between counter-based and two-watched-
literal unit propagation. The number of instances solved with 2WL (9068
in configuration CDCL) is higher than the number solved with the counter-
based approach (8409 in configuration ¬2WL). This performance improve-
ment is also due to two factors: a) unlike the counter-based approach which
requires updating clause status during branching and backtracking, 2WL
propagation needs to update clause status only during branching, and b)
2WL propagation only needs to perform status updates when watched liter-
als are assigned to 0.

– Configurations ¬RST and CDCL differ only in whether restarts are disabled
or enabled (using the Luby strategy) and show that the impact of restarts,
compared with the other major features, is rather modest. Enabling Luby
restarts allows 9068 instances to be solved compared to 8653 instances solved

K. Ghorbal (INRIA) 49 SIF M2 49 / 58

Visualizing Boolean Functions
[SATGraf, Newsham et al., 2015]

(a) Industrial instance:
aes 16 10 keyfind 3

(b) Random instance: unif-k3-r4.267-
v421-c1796-S4839562527790587617

Fig. 1: Community structure of instances from the SAT 2013 Competition

Phase 3: Third, SATGraf uses a user-specified layout algorithm to render the graph
while maintaining the structure detected in phase 2. Currently the user may
choose from either a modified version of layout algorithm by Kamada and Kawai
(KK) [8] or the Fruch-Reingold (FR) algorithm [9]. Other “fast” layout options
include a grid or circle solution, where communities are treated as separate
graphs and use either the KK or FR layout algorithms, these communities are
then placed on a grid or circle pattern. While these options do not display the
structure as clearly, they scale better.

Phase 4: Finally, users of SATGraf can replay di↵erent stages of the evolution.
While doing this they may also hide communities, edges or variables, that are
not of interest to obtain a clearer view of those that are. To this end the user
may also zoom in on specific communities within the graphical representation,
and choose whether to hide, or colour variables that have been assigned values
at any point during the evolution. The user may also choose to export the entire
graphical evolution as a GIF file for later analysis, though this does create large
files.

The modular design of SATGraf allows for easy integration of any other structure
metric or layout algorithm for either of these categories. Figure 1 shows the graph
generated by SATGraf for two instances from the SAT 2013 competition [10]. Figure
1a is an industrial instance, and Figure 1b shows a randomly-generated instance.
Edges between variables within the same community are assigned a distinct colour,
one per community. White edges represent inter-community edges, and red edges
resulting from conflict clauses. As is evident, the industrial instance has lot more
distinct communities that can be neatly partitioned, while the randomly generated
instances typically have lots inter-community edges.

SATGraf can present the evolution of a formula by interacting with modified ver-
sions of SAT solvers. Currently only MiniSAT is supported, however C source code
is included in the project to ease integration with other solvers. MiniSAT interacts
with SATGraf’s evolution mechanism by notifying it when a variable changes value
– either by decision or propagation — and when new conflict clauses are added.

K. Ghorbal (INRIA) 50 SIF M2 50 / 58

Miscellaneous

SAT Competition

• Visit satlive.org

Applications

• Automated Theorem Proving (more later)

• Current industrial applications (hardware verification):

• hundreds of millions of variables and clauses for a couple of hours of
computations

Alternative Approaches

• Stalmarck’s method (generate UNSAT certificates)

• Greedy local search (more adapted for random expressions)

K. Ghorbal (INRIA) 51 SIF M2 51 / 58

Multiprocessing Scheduling Problem

Data:

• A: a finite set of tasks

• `: a measure (or time length) ` : A→ N
• m processors

• D: a deadline in N
Multiprocessing Scheduling Problem (MSP):
Find a partition A = A1 ∪A2 ∪ · · · ∪Am of A into m disjoint sets such that

max
1≤i≤m

∑
a∈Ai

`(a)

 ≤ D .

Question: Prove that MSP is NP-complete.

K. Ghorbal (INRIA) 52 SIF M2 52 / 58

Complexity Classes

The problem is in NP: Given a partition, one can check the inequality by
computing the max over i .

NP-completeness

• Reduce a known NP-complete problem (e.g. SAT) to the
multiprocessing scheduling problem.

• Essentially, solve SAT by solving the given problem.

K. Ghorbal (INRIA) 53 SIF M2 53 / 58

Popular NP-Complete Problems
[Karp 1972]

Hamiltonian Circuit Problem
Given a graph G = (V ,E), is there a vertex permutation π : V → V such
that {vπ(n), vπ(1)} ∈ E and {vπ(i), vπ(i+1)} ∈ E , i = 1, . . . , n − 1?

Partition Problem
Given a finite set A and a positive measure s on A, is there a subset A′ of
A, such that ∑

a∈A′

s(a) =
∑

a∈A\A′

s(a) ?

K. Ghorbal (INRIA) 54 SIF M2 54 / 58

Reduction of the Partition Problem

The partition problem is a particular instance of MSP with:

D =
1

2

∑
a∈A

s(a), m = 2, s = `.

Suppose we found a partition of A in two subsets A1 ∪ A2 that solves this
instance of MSP, we prove that it solves the partition problem.

K. Ghorbal (INRIA) 55 SIF M2 55 / 58

Detailed Proof

Suppose that (without loss of generality):∑
a∈A1

s(a) ≤
∑
a∈A2

s(a),

then, A1,A2,D solve MSP:

max
1≤i≤2

∑
a∈Ai

s(a)

 =
∑
a∈A2

s(a) ≤ D =
1

2

∑
a∈A

s(a) =
1

2

∑
a∈A1

s(a)+
1

2

∑
a∈A2

s(a)

which implies
1

2

∑
a∈A2

s(a) ≤ 1

2

∑
a∈A1

s(a)

Therefore ∑
a∈A1

s(a) =
∑
a∈A2

s(a) = D.

K. Ghorbal (INRIA) 56 SIF M2 56 / 58

NP-Complete Problems are Ubiquitous

• Graph Theory

• Network Design

• Sets and Partition

• Sequencing and Scheduling

• Algebra and Number Theory

• Games and Puzzles

• Automata and Languages

• Optimization

• Logic

Hence the importance of SAT Solvers ...

K. Ghorbal (INRIA) 57 SIF M2 57 / 58

Summary

SAT Problems

• Equisatisfiability (CNF transformation)

• Proving tautological implications/equivalences

CDCL-DPLL Algorithm

• Unit Propagation

• Pure Literal

• Resolution/Splitting/Conflict Learning

K. Ghorbal (INRIA) 58 SIF M2 58 / 58

	Propositional Logic
	CNF Transformation
	DPLL-based Algorithms
	Unit Propagation
	Branching and Learning

	Conclusion
	Reduction Examples

