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Optimization problems

Definitions

Find an optimal value of a function with respect to some constraints
Optimum: minimum or maximum
The function to optimize is called the objective or cost function

The constraints form a set called the feasible set
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Standard form

.. at least for this course

min / max fy(x)

s.it. fi(x)<0, i=1,...,m

e x denotes a point in some vector space (e.g. R")

e All functions are real valued: their codomain is R

e The codomain of the constraints f;, 1 < i < m, will be generalized
later, together with the order relation (<)

Optimal value:

p*=inf/supq fo(x) | A\ fi(x) <0A A hi(x) =0
i=1 j=1
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Inner product

e Let ¢ and [0 be elements of some vector space V
e R" M" S" etc.

e An inner product is a bilinear function from V x V to R

¢ -
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Outline

@® Simplex algorithm
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Linear programming

min c-x min  c-x
s.t. Ax<b s.t. Ax=b
x>0
c,x eR”

¢ - x is the inner product of ¢ and x

A an m x n matrix (over the reals)

beR™

x,y € Rk, x <y means y — x € RX (non negative orthant)
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Saturated formulation

IXERMAx<b <+ TscRL.As=b

Saturation Procedure

e add 2 fresh variables for each variable
e add a fresh variable for each row of A
e k =2n+ Frows of A

Example

(1 o) <X1) <1, inR? < 3Z3T2 o (1 -1

Xp=83—S,
X2 2 3 4
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Vertices and Bases (1/2)

x € R, Ax = b, rank(A) = m < n (empty polyhedron otherwise).

Base (algebraic vertex)

Let {B,91} be a partition of {1,...,n}. B is a base if and only if
|B| = rank(Ag) where Ay is the submatrix of A with columns in B.
B is non-degenerate if |'B| = m, and degenerate otherwise (|B| < m).

Example

For A = <é 1 _01> {1} and {3} are degenerate bases while {i,;},

1 < i< j <3, are non-degenerate.

Proposition

Let B be a base. The unique point v (if any) in the polyhedron such that
vi =0 forall i € 9 (i.e. i & B) is a vertex (facet of dimension zero).
(Such a point may not exist since A%lb has to be non-negative.)

K. Ghorbal (INRIA) 7 SIF M2 7/ 68



Vertices and Bases (2/2)

(Weak) Correspondence

e Each vertex has at least one base.

e Each base has at most one vertex.

Examples

e The polyhedron x1,x» € Ry, —x3 + x2 = 1 has no vertex associated
with the (non-degenerate) base B = {1} because Aglb < 0.

e The polyhedron x1, x> € Ry, x; + xo = 0 has the same vertex, (0, 0)
associated with two (non-degenerate) bases: B = {1} and B’ = {2}.
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Local Considerations

Let B be a base associated with the vertex v. For simplicity, suppose that
B is non-degenerate so that Ag is invertible. Thus, for all x = (xg xn)%:

Ax = (Az Ax) (ii) = Agxp A =b = xp = Az'(b— Anxn)

The above equation has a solution in the non-negative orthant, namely v.
Suppose that the polyhedron is not reduced to a point. Then, there exists
a positive real number € such that:

Vxp € R xll <€ = xu = Agl(b— Awxn) > 0

We next solve the original optimization problem locally around v.
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Reduction

min  c-x min  r-xy+ a
s.t. Ax=b s.t. xn >0
x>0 o]l oo <€

(&):] A_l(b — Ame) — —1
c-x= <Cm> . ( B o = (cn — ARAg‘cn) xm + cp - Ag'b

r a

e As long as ||xn|,, < €, the point (A%l(b — Anxn), xn) is feasible

e r - xy is called the reduced cost function
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Optimality criterion

We seek a displacement that locally decreases r - xin

Suppose that there exists a index j such that r; <0

Consider a displacement along this jth coordinate

Let e; denote the jth vector of the canonical orthonormal basis of RI"!

Let p be a positive real number: xn < vy + pe;
f'Xm:f'(Vm-i-Pej):f'Vm—l-pr-ej:r-vm—i—prj<r-vm

Optimality criterion: r > 0

e If r > 0: no possible minimization for r - xi since xy > 0
e The only local minimum is x;3 = vip =0

e which is also global by convexity

K. Ghorbal (INRIA) 11 SIFM2  11/68



Unboundedness criterion

Recall that locally xp = A%l(b — Aqxn)

So the update xyi < v + pe; leads to

xp < Ag (b — An(vin + pe))) = Aglb —AR An vn —p Azt Ane

0

1%:] 5 B

Since x5 > 0, we get vz > pdy
e This gives an upper bound for p:

p < min {253 | (Bu); > o}

Unboundedness criterion: iy <0
p can be chosen arbitrarily big and the minimum is —oo
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Geometric intuitions

When xyn < vin + pej:
e The jth component of xy becomes strictly positive
e When p increases, x moves along an edge (a facet of dimension 1)

If p is unbounded, the minimum is —oo (halt)

If p is bounded, one component (say the ith) of xg vanishes when p
reaches its upper bound: we reach a new vertex.

update the base: let (B',0) = ((B\ {i}) U{}t, M\ {HU{i})
If rank(Ag/) = m, then B’ is a new non-degenerate base

Otherwise, rank(Agy) < m, and we can remove some elements from
B’ (other than j) to make it a non-degenerate base

repeat if the optimality criterion (r > 0) is not met.
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Simplex algorithm

@ Start at a vertex (base)

@ |If the optimality criterion is satisfied, halt: the problem is solved

© Otherwise, move along an edge that minimizes the reduced cost function
@ |If the unboundedness criterion is satisfied, halt: the problem is unbounded

©® Otherwise, we reach a new vertex and we loop back to the first step

Does it always terminate?
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Example

min X1 — X2
s.t. x31+x=0
x>0

Start with the base B = {1}, 9t = {2}

v (8),A%—Am—(1)

r=cn — ALAgz o = (—2) and oy = Ay Ane = (1)
update xp < 0+ p, xg < 0—p (p=0)

So the algorithm is updating the base without changing the
vertex
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Outline

© Duality
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Lagrangian function

The primal problem is the minimization problem (by convention).
s.it. fi(x)<0, i=1,...,m (p)

Intuition: inject the constraint into the objective function.
The Lagrangian associated to (P) is defined by:

m

L(x,\, p) = fo(x) + Zkifi(x) + Zﬂjhj(x)y
j=1

i=1

e No extra constraints for x (as long as the functions are defined)
e )\;, i=1 ..., m, are non negative real numbers
e uj, j=1,...,p, are unconstrained real numbers
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Lagrangian’s saddle points

L0 A, 1) = fo(x) + Y Nifi(x) + Y uihji(x) -
i=1

j=1
e If there exists an X and an index i such that f;(X) > 0, then L(x, A, u1)

is unbounded since A; can be chosen arbitrarily big.

e If there exists an X and an index j such that h;(X) # 0, then
L(x, A, 1) is also unbounded since 11; can be chosen arbitrarily big or
small depending on the sign of h;(X).

fo(x) if A;ifi(x) OANA; hi(x) =0

sup L(x, A, i) :{ 400 otherwise

A>0,p

Solving (p) is then equivalent to minimizing supy>q , L(x, A, i1) over x:

p* =inf sup L(x, A, u)
X A>0,u
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Weak duality

In general, if L is a real valued function defined over the product X x Y,
then

supinf L(x, y) < infsup L(x,y)
y X Xy

Proof. Let (x,y) € X x Y, then, by definition of inf and sup

inf L(x,7) < L(%,7) < sup L(X, y)
X y

So sup, L(x,y) is an upper bound of inf, L(x,¥). Since the sup is the smallest
upper bound by definition, one gets

supinf L(x,y) < supL(x,y)
y X y

But then supy inf, L(x, ) is a lower bound for sup, L(X, y). Since, dually, the inf
is the biggest lower bound, one gets the desired result:

supinf L(x,y) <infsupL(x,y) .
y X Xy

K. Ghorbal (INRIA) 18 SIF M2 18 / 68



Weak duality applied to L

By the weak duality, we get a lower bound of the optimal value p*:

0 = sup infL(x, A\, n) < inf sup L(x,A, p)=p"
A>0,u X — X X0

where 0* denotes the objective value of a distinct, yet related, optimization
problem, (), called the dual problem, and defined by
supx>o,, infx L(x, A, u), for the exact same Lagrangian L of (p).

max  g(A, p) :=inf L(x, A\, p)
sit. X\i>0, i=1,....m (D)
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Duality properties

The evaluation of the dual cost function on any feasible point of the
dual problem bounds from below p* (primal optimum):

V(A p) e RE XRP. g(A, p) <p”

If the primal is unbounded (p* = —o0) then the dual is unfeasible
If the dual is unbounded (9* = +00) then the primal is unfeasible
The primal and dual cannot be unbounded simultaneously
The primal and the dual can be both unfeasible (—oco < +00)

min  — x max A

sit. 0x+1<0 (p) st. 0OA—1=0 ()
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Weak vs. Strong duality

Weak duality: Always true
a‘k S p‘k
Strong duality: Not true in general
a* — p*

Sufficient conditions under which the strong duality holds are known as
constraint qualifications.
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Example: duality for linear problems

fo(x) = ¢ - x for some fixed vector ¢ € R"
fi(x) = —x;, i=1,...,n (m= nin this case)

p

Lx,\,p) = c-x+ Z)\;(—X,') +Zﬂj(Aj X — bj)

i=1 j=1

—A-x -(Ax—Db)
The Lagrangian L could be rearranged as follows (recall that
Ax -y = x - Aly, where A’ denotes the transpose of the matrix A):

Lo A\ ) = =b-p+x- (Afp+c—A)
and we get:

—b-p fA'YU+c—A=0
—00 otherwise

inf L(x, A\, p) = {
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Example (cont'd)

min c-x

max —b-pu
st. Ax=b  (p) st. Alu+c—-A=0 ()
x>0 A>0

There are several possible formulations, for instance:

min ¢-x

max —b-A
s.t. Ax<b (p) sit. AA4+c=0 ()
A>0

In this case (everything is linear), they are all dual of each other!
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Optimality criterion for the simplex algorithm

The reduced problem has the form (e > 0, |9t = k):

min r - xy

s.t. <_/:k> xn < <S> (»)
max  — <S) . G;) e

A
s.t. (—Ik /k) ( 1) +r= —)\1 +)\2 +r=0 (0)

So A5 =0 and r = A]. Thus r > 0 which is the optimality criterion.
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Properties of the Dual Problem

e The objective function g(\, i) is concave (to be proven later)
e The feasible set is convex

e ) belongs to the non negative orthant R
e 1 is unconstrained

What is convexity?
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Outline

O Convexity
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Convexity

e Intuition: A set C is convex if and only if, for any two points in C,
the shortest path that links these two points is also entirely in C.

e A point in a vector space is a vector and one can define scalar
multiplication, addition etc.

e In these settings, C is convex if and only if, for all ¢, ¢ € C, for all
A€f0,1],Aa + (1 — AN is also in C.

Convex Non convex
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Convex functions

Definition: The epigraph of a function f : D — R is defined by

epi(f) == {(x,y) [ f(x) <y} CD xR

e f is convex if and only if its epigraph is a convex set

e f is concave if and only if —f : x — —f(x) is convex

Examples:
o f:ixr— X2 is convex (cf. left figure in the previous slide)

o f:ix— X3 + X2 is not convex (cf. right figure in the previous slide)

K. Ghorbal (INRIA) 27 SIF M2

27 / 68



Properties of convex functions

YA€ [0,1]. Vx,y. f(Ax+(1—=N)y) <A (x)+ (1= N)f(y)
Intuition: the image of a point in the segment joining x and y is
somewhere below the segment joining f(x) and f(y)

Any local minimum of f is also a global minimum
One can define a weak notion of differentiability over convex functions

The sub-differential of f at x is defined by the following set:
Of(x) :={zeR"|VteR". f(t)>f(x)+z-(t—x)}

where x - y denotes the usual scalar product over R”

Intuition: the sub-differential at x is the set of all affine functions
that touches the graph of f only at x

Example: the absolute value function is non-differentiable at 0 in the
usual sense, but it is sub-differentiable, 0f(0) = [—1, 1]
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Support function

Let C be any non-empty subset of a vector space equipped with an inner
product denoted by (-).

Support function of a set

oc(x) = igg{x -a}

e Jc is defined for any vector x

e {c, as a function of x, is convex
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Geometrical intuition: support function
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The dual is always convex

o Let v:= (A1, .o\ Amy 1,0, fip, 1) € RMFPFL
o Let uy = (A(x),..., fm(x), h1(x), ..., hp(x), fo(x)) € RMFPFL
o Let S:={uyx | f;, hj are defined } C R™TP+1

m P
LA 1) = fo(x) + D Nifi(x) + > pihi(x) = v+ uy
i=1 j=1

The objective function g is concave (opposite of a support function):
g(A p) =inf L(x, A, )
X
=inf{v - uy}
X
= —sup{(—v) - ux}
X
= —0s(-v)
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Geometrical intuition: weak vs strong duality

.00

imo ?
P Feassble
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Outline

@ Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
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Convex problems

e fy is convex

e fi, i=1,..., m are convex
e hj,j=1,...,parelinearin x: hj(x) = A;-x — b;
min  fo(x)

st. fi(x)<0,i=1,....m  (p)
AJ'-X—bJ'ZO,jZ].,...,p

Slater’s condition (constraint qualifications for convex problems)

If the primal is strictly feasible (i.e. there exists an x such that
filx)<0,i=1,...,m and Aj-x—b; =0, j=1,...,p), then strong
duality holds 0* = p* < +00.
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Complementarity (under Slater’s condition)

Let (\*, u*) be the optimum dual and x* be the optimum primal:
. ] fi(x*) <0 i=1,...,m
e x* is feasible: { Ax —b=0 j=1,....p
o (A\*,u*) is feasible: A* >0
As a consequence of the strong duality, we have in addition:

=g\, u") = il;l(f L(x, \*, %) = fo(x*) = p*
Therefore, by definition of the infimum

fo(x™) = inf L(x, A", ") < L(x*, \*, u*)

m p
= f(x") + D AR+ ) (A x b
i=1 j=1
= fo(x*) + ) Afi(x")
=1
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Complementarity (cont'd)

0 <3 7% ATfi(x") Aifi(x*) =0
AL >0 — { x>0 i=1,....m
A(x*), ..., fn(x*) <0 —fi(x*) >0

Complementarity conditions

0< AN L —f(x*)>0, i=1,....m
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Differentiability

When fo, f1,..., fn are continuously differentiable (i.e. Cl), the optimum
x* has also to satisfy the following condition:

1%
Vi L(x*, A, 1) = Viy(x +Z/\Vf )+ A =0

oL oL
VXL— <8Xl,,axm>

Recall that
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Karush-Kuhn-Tucker Conditions

Definition
For an optimization problem (p) with Lagrangian L and such that f,

fiy.oosfm, b1, ... hp are Cl, x* verify the KKT conditions if and only if

there exists some A € R™ and p € RP such that:
filx)<0 i=1,....m
hi(x*)=0 j=1,...,p
® Dual feasibility: A >0

© Complementarity \;fi(x*) =0, i=1,...,m
O Stationarity: V,L(x*,\,u) =0

@ Primal feasibility: {

Under constraint qualifications, KKT conditions are only necessary.

Convex problems

Under Slater’s condition, KKT conditions are also sufficient: x* is
optimum if and only if KKT conditions hold.
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Outline

@ Interior Point Method
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Assumptions

min  fo(x)
st f(x)<0,i=1,....m (p)
AJ'-X—bJ'ZO,jZ].,...,p

e fy,f1,...,f, are convex and twice continuously differentiable
e Slater's condition holds: the problem is strictly feasible

e Thus, strong duality holds and p* is finite and attained for some x*
that satisfy KKT conditions

Examples: Linear, Quadratic, Geometric Programming (LP, QP, GP)
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Solving KKT system

KKT conditions

x* is an optimum for (p) if and only if

° Aj'X*—bJ'ZO,j:].,...,p
e 0< AN L—fi(x*)>0, i=1,....,m
o Vil(x*;\,u)=0

We cannot solve such system numerically as it combines equality and
inequality constraints.

Main idea
Design a sequence of optimization problems that we can solve and such
that their solutions converges towards the optimum of the original problem.
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Non smooth (but convex) reformulation

To get rid of the (problematic) inequality constraints f;(x) < 0, one can

hide them inside indicator functions.

Indicator function

The indicator function of R_ is a convex function defined as follows:

0 if u<o0
+00  otherwise

Z(u) = {
The problem (p) becomes then equivalent to

min  fo(x) + ZI(;‘,-(X))

s.t. Aj’X—bJ'ZO, j=1...,p (pI)
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Smooth approximation

we can approximate the indicator function Z smoothly using a sequence
of logarithmic barriers:

_1 _ ;
v R—=R, u»—>{ ¢ log(—v) |fu<Q
+00 otherwise

As t increases, t(u) remains close to 0 for a fixed u < 0; as u gets close

to 0 (from the left), p:(u) diverges to oo for any arbitrarily big fixed t.
Let

6e0) = D peli0x)) = 7 3 loB(~(x))
i=1 i=1

Logarithmic barrier approximation
The idea is to approximate p* using the sequence p; (t > 0):

min  fo(x) + d+(x)
S.t. AJ'~X—bj:07 j=1...,p (pt)
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Logarithmic barrier functions

Fix a positive t.

be(x) = —% S log(—fi(x)), domed = {x | A(x) <O0,..., fm(x) < O}
i=1

e ¢; is convex as a function of x (composition rule applied to ¢; and f;)

e ¢ twice continuously differentiable (with respect to x)

m

Voe(x) = Z: —t;(x)vﬁ(x)
V2¢(x) = z_; _t;WVf,-(X)Vf,-(X)f + 12_; —t;,-(x) V2£(x)
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Logarithmic barriers: Example

d(x) = —log(—(—x1 — x2)) — log(—(—2x1 4+ x2 — 1))
— log(—(3x1 + x2 — 10)) — log(x2 + 1)
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KKT conditions for p;

Since p satisfies Slater's condition, so does p; for any t > 0: strong duality
holds ( 0} = p} < +00).

KKT conditions

Fix t > 0. x*(t) is an optimum for (p;) if and only if
e x*(t) € dom¢,
° Aj-X*(t)—bjzo,j:].,.‘.,p
o Vili(x*(t),u(t)) =0

Observe that, by construction, the system has no complementarity
conditions since the feasible set of (p;) has no inequality constraints.
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Stationarity: V,L; vs V,L

1%
ViL(x*, A, 1) = Viy(x +Z)\Vf )+ > uiAi =0
j=1

For x € dom¢;:

Le(x*(t), u(t)) = VhH(x*(£)) + Ve (x* (1)) + Zm(t
= VHG(B) + t(i(t) )+ Zu,
=1 \ ,

Ai(t)
=0

Ai(t) and pj(t) seem to be natural candidates for A; and p; respectively.
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Checking KKT conditions of p

Consider (x*(t), A(t), u(t)) as potential candidates for (x*, A\, ). We need
to check whether they satisfy the KKT conditions of p.

e Aj-x*(t) — bj = 0 holds thanks to the primal feasibility of x*(t) as an
optimal solution of p;

e fi(x*(t)) <0 holds thanks to the strong duality of p;, in particular
p; < 400

e 0 < X¥(t) holds by definition (recall that t > 0)

o V, L(x*(t), A(t), u(t)) = 0 holds also by definition of A(t) and u(t)

Only the complementarity is missing and we have

As t increases the product tends towards zero, fulfilling the
complementarity at infinity.
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Primal approximation

= g()\?:u‘) = igf L(X7 )‘7#) = fb(X*) =p*
0r = &(u(t)) = inf Le(x, u(t)) = fo(x"(t)) + de(x*(2)) = p7

m p

LG (8,0 1(0) = 0 (0) + 3 = + 3 (B4 < (1) ~ )
i=1 j=1
= f(x(8) - 7
0 (£)) 2 9 =0 2 g(M(),u(t)) = inf L{x, A(8), u(#))

=2L(x*(t), A(t), u(t))
— H(x"(8) -
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Interior point method

Start with a strictly feasible x, t >0, > 1, and ¢ > 0

@ Numerically compute x*(t) by solving the KKT conditions for p;
(Newton-based techniques)

® Update: x + x*(t)
® If 7 < ¢, halt (Stopping criterion)

O Otherwise, increase t < at and repeat

e Halts with fo(x*(t)) ~ p* £ e
e Several heuristics exist for the choice of v and the initial t

Central path: {x*(t) |t > 0}
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Example of a central path (cont'd)

) 1
min x; + X2 + Eqﬁ(x)

SIF M2
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Outline

@ Semidefinite Programming (SDP)
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SDP: Generalized LP

Linear programming

min c-x

(A b ) max —b-pu

s.t. i+ X = b,

! Y P st. Alvpu+c>0 (9)
l=j=p 1<i<n
x e R} -

Semidefinite programming

e S": set of n X n symmetric matrices
° C,AJ'ES", bjGR,lSjSp

min  C-X gn . idefini :
° . positive semidertinite matrices
st. A-X=b;, (p) A
1<i< e X € 87 also denoted as X = 0
/=P
-): Frobenius inner product S"
Xes e (-): Frobenius inner product over

A- B =tr(A'B) (tr for the trace)
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Remarks

SDP generalizes LP in the following sense: instead of linear combinations

of real variables (x;), 1 < i < n, seen as coordinates of one vector x, SDP
allows linear combinations of inner products (X;- X;), 1 <i,j < n, seen
as components of one symmetric matrix X (where Xi,..., X, are vectors

of R").

Two equivalent definitions for M € 8" to be positive semidefinite:

(i) M is a Gramian matrix: Ju € R". M = uut

(i) Non negative quadratic form: Vv e R". v-Mv=M -w! >0

The Frobenius inner product has a related norm:

IMP=M-M= > m

1<ij<n
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Infimum over symmetric matrices

Let X, M € S8", then

0 if M=0

infX -M= { )
X —oo0  otherwise

e If M= 0or M <0, then take X = —tM. Then, X - M = —t||M|)?
and make t goes towards +o0

e If M is undefinite, then there exists v € R" such that v - Mv < 0.
Then take X = twv?t, thus:

M-X=M-(tw') = t(v-Mv) <0,

and make t goes towards +o0.

So the only choice left is M = 0, in which case the inf is trivial.
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Dual SDP
Lagrangian (A € S7)
p

LX A p) = C- X4+ A (=X) + ) ui(A- X = by)
j=1

p
g(A ) = jinf LX,Ap)=—b-p+ inf X C—/\‘i‘z;ﬂjAj
J:

max —b-pu max —b-pu

p p
sit. C—NA+ Z,ujAj =0, (@) |st. C+ ZMJAJ' =0, (9)
j=1 j=1

AN>=0 Linear Matrix Inequality

K. Ghorbal (INRIA) 58] SIF M2 53 / 68



KKT conditions

e SDP is a convex problem

e Strong duality holds under Slater’s condition

e VxC-X=C
X* satisfy the KKT conditions for the primal SDP if and only if there
exists A € 8", u € RP such that:

® Primal feasibility: A;- X* =b;, 1 <j<p

® Primal feasibility: X* >0

® Dual feasibility: A >0

O Complementarity: A- X* =0

© Stationarity: VxL(X*,A\,u) = C—A+37  jjAj =0

K. Ghorbal (INRIA) 54 SIF M2 54 / 68



Interior point method

Logarithmic barrier for the positive orthant of R”
For x > 0: ¢(x) = — > i log(x;)

Logarithmic barrier for the positive orthant of §”
For X > 0: ¢(X) = — log(det X)

Central path
{X*(t) | t > 0}, where x*(t) is the optimum of the following parametric
convex problem:

1
min C-X+?¢(X)
st. Ai-X—b=01<j<p (pe)
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Generalized convex problems

min  fo(x)
s.it. fi(x) =k 0,i=1,...,m
Aj'X—ijO,j:].,...,p

X in a vector space V equipped with an inner product

fo : V — R convex and real valued

i:V—>V, i=1 ..., m, convex

fi(x) =k, 0 means that —fi(x) € K; for some proper cone K; of V
fo, fi, ..., fm twice continuously differentiable (possibly in a weak
sense)

Aj eV, bj eR

Under Slater's condition strong duality holds

K. Ghorbal (INRIA) 56 SIF M2 56 / 68



Generalized logarithmic barrier for proper cones

¢V — R is a generalized logarithm for the proper cone K C V if:
e ¢ is defined over the interior of K

o V2¢(x) =g 0 for 0 <k x
o ¢(sx) = ¢(x) + rlog(s) for all 0 <k x and s >0

e r is the degree of ¢

Examples:
e K =Ry, ¢(x) = log(x) (classical logarithm)

o K=R1, ¢(x) = 3 i, log(xi) (r=n)
o K =51 ¢(x) = log(detx) (r =n)

Observe that —¢ is convex (¢ is concave)
SIFM2 57 /68
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Implementations

Solvers

e Matlab packages: SeDuMi, SDPT3
e Open source: CSDP

Environment

e Matlab software: CVX, YALMIP, SoSTools

e Open source: coin-or.org
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Outline

©® SDP Relaxation
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Sum-of-squares polynomials

Let h € R[x1, ..., xn] be a polynomial over the reals.
h is non-negative if and only if Vx € R". h(x) >0

Sum-of-squares (SoS)
A polynomial h is a sum of squares if and only if there exists polynomials

gi» 1 < i< m, such that:
m
h=) &
i=1

A SoS polynomial is necessarily non-negative. The converse does not hold
in general (Motzkin polynomial):

h(x1, x2) = xix3 4+ x2x5 — 3x3x3 + 1

h is non-negative and is not a SoS.
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Polynomials as scalar products

Take a polynomial h € R[x, ..., x| of degree < 2d.

e We can write h as a scalar product H - X
e H is a symmetric matrix (not unique)
e X is symmetric and semidefinite positive (not unique)
X can be seen as a Gramian matrix formed as the (matrix) product of the

vector y and its transpose, where x denote a vector of monomials of n
variables of total degree less than d.

Example
1 0 0 x2
Xt —x2x3+x5=10 -1 0] X1X2 (X12 X1X2 x22)
0 0 1 X3
—_— \~—V\V—
H X

K. Ghorbal (INRIA) 60 SIF M2 60 / 68



SoS is positivedefiniteness

Proposition
A polynomial h is SoS if and only if H > 0.

Proof. If H = 0 then there exists a matrix U such that H = U*U. Thus
2
h=H-X=(UV) (xx)=(Ux)-(Ux) =lUx]" .
If his SoS, then there exist a list of polynomials g; such that h =", g?. The
monomials vector y is then formed by all the (distinct) monomials appearing in

all the g;. The rows of the matrix U are formed by the coefficients of the
polynomials g;.
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SoS problems are LMI

Example (cont'd)

1 0 U1 xf xf’xz x12x22
Xt =3+ =10 2m—-1 0] [x¥x xXx3 xx3
1 0 1 X12X22 xlxg’ Xg
H X
Thus, his SoS if and only if
1 0 O 0 0 1
Jps. 0 -1 0 4+mm |0 =2 0| =0
0 0 1 1 0 O

which is an LMI problem: dual feasibility of the a dual SDP problem.
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SoS reformulation of (dual) SDP

h is SoS is equivalent to solving the following dual SDP problem:

max 0
1 0 O 0 0 1

s.t. 0 -1 0l 4+wmm |0 =2 0] =0 (d)
0 0 1 1 0 O
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Dimensions of the LMI problem

For a fixed degree d, the size of x is
n+d
d
The size of the unknown vector of the LMI reformulation is

(539
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Remark

The choice of the monomials list is important:

1 0 I i
Xf — X12X22 + X§ =0 —2uy;—-1 0 ]- X1X2 (xl2 X1X2 x22)
41 0 1 x22
~~ SN——
H X
_ 2 1 ( 2 2
= 1 ’ 2 | (X1 Xz)
<_2 1 X2
~—_—— N——
H/ X/
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SDP relaxation of polynomial problems

min  p(x) min C-X
st h(x) =0, st Ajéj::j;, (»)
1<j<p N ETSL’F <
e non-convex e convex
e size of x: n : :i*zego;())i:) ("Jc?d) X (n?;d)

Lasserre hierarchy

Increasing d gives tighter and tighter approximations for the optimal value
of the original non-convex problem.
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SDP relaxation of discrete problems

Max-cut problem

Let G = (V, E) be a graph. The max-cut problem is the following
discrete optimization problem

1_..
a3 Lvd

(i)eE
st vi={-1,1} (v eV)

SDP relaxation (Goemans and Williamson 95)

vj are now considered vectors, and v;v; becomes v; - v;. Let X = vvi.

—min C-X
s.t. diag(X) =1, (p)
X =0
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