
SATGraf: Visualizing the Evolution of SAT
Formula Structure in Solvers

Zack Newsham, William Lindsay, Vijay Ganesh,
Jia Hui Liang, Sebastian Fischmeister, and Krzysztof Czarnecki

University of Waterloo, Canada

Abstract. In this paper, we present SATGraf, a tool for visualizing the
evolution of the structure of a Boolean SAT formula in real time as it is be-
ing processed by a conflict-driven clause-learning (CDCL) solver. The tool
is parametric, allowing the user to define the structure to be visualized.
In particular, the tool can visualize the community structure of real-world
Boolean satisfiability (SAT) instances and their evolution during solving.
Such visualizations have been the inspiration for several hypotheses about
the connection between community structure and the running time of CDCL
SAT solvers, some which we have already empirically verified. SATGraf has
enabled us in making the following empirical observations regarding CDCL
solvers: First, we observe that the Variable State Independent Decaying Sum
(VSIDS) branching heuristic consistently chooses variables with a high num-
ber of inter-community edges, i.e., high-centrality bridge variables. Second,
we observe that the VSIDS branching heuristic and hence the CDCL search
procedure is highly focused, i.e., VSIDS disproportionately picks variables
from a few communities in the community-structure of input SAT formulas.

1 Introduction

Conflict-driven clause-learning (CDCL) SAT solvers have witnessed dramatic im-
provements in their efficiency over the last 20 years, and consequently have become
drivers of progress in many areas of computer science such as formal verification [1,
2]. There is general agreement that these solvers somehow exploit structure inher-
ent in industrial instances. In order to understand what this structure is and the
mechanism by which CDCL solvers exploit it, we need visualization/evolution tools
that can help us formalize and visually check our hypotheses that can subsequently
be verified using the scientific method.

In order to enable researchers to improve their intuitions of how CDCL solvers
work, better understand the structure of industrial instances, and visualize in real-
time how CDCL solvers exploit said structure, we built the SATGraf visualiza-
tion/evolution tool. SATGraf takes as input a Boolean formula, and outputs a ren-
dering of its variable-incidence graph (VIG) as well as showing how the structure
evolves in real-time while being solved by a SAT solver. SATGraf is parametric,
i.e., it can be configured to display any structure discoverable in a SAT formula.
SATGraf enables researchers to formalize and visually check their hypotheses about
the behavior of SAT solvers.

SATGraf has been invaluable to us in formulating and visually checking many
hypotheses about CDCL SAT solvers that we proposed, which we were able to
subsequently verify empirically. For example, in our paper on community struc-
ture and their impact on SAT solver performance [3] we provide empirical evidence
that community structure correlates more strongly with the running time of CDCL



solvers than traditional hypotheses such number of clauses, variables and their ra-
tio. We used SATGraf to visually check that many classes of easy-to-solve indus-
trial instances have “good” community structure. Another hypothesis that SATGraf
helped us verify is that the VSIDS branching heuristic disproportionately favors
high-centrality bridge variables, i.e., those that belong to clauses that lie between
communities in the community structure of SAT instances.

Background: While SATGraf is able to display any user-defined structure, we
focus here on community structure. The idea of decomposing graphs into natural
communities arose in the study of complex networks. Modularity is a measure of
the quality of the community structure of a graph and ranges from 0 to 1, where
0 is a poor community structure and 1 a strong community structure. Informally,
we say a graph has poor community structure (modularity close to 0) if there are
more inter-community edges than intra-community edges. Conversely, if the graph
has more intra-community edges than inter-community edges, this correlates with
good community structure (modularity close to 1). Modularity is often used in
optimization methods for detecting community structure in networks. The precise
definition and its calculation can be found in [4]. Many algorithms [5, 6] have been
proposed to solve the problem of finding an optimal community structure of a graph,
the most well-known among them being the one from Girvan and Newman [5].
We refer the reader to these papers [5–7] for complete descriptions of community
detection algorithms.

Contributions: We make the following contributions in this paper.1

The SATGraf Tool: We present SATGraf, a tool that enables researchers to visu-
alize the community structure of a SAT instance and see its evolution while solving
by a real world CDCL solver.

VSIDS & High-centrality Bridge Variables: Using SATGraf we observed that
the VSIDS branching heuristic disproportionately picks high-centrality bridge vari-
ables in the community structure of input instances during the entire run of the
solver.

Focused Search by CDCL Solvers: Using SATGraf we observed that the VSIDS
branching heuristic disproportionately picks variables from a few communities in the
community structure of SAT instances during the entire run of the solver.

Unnecessary Backtracking Steps: Using SATGraf we observed that backtrack-
ing resets decisions and propagations unrelated to the current conflict.

2 How SATGraf Works

SATGraf is implemented in phases as described below:

Phase 1: First, SATGraf converts an input Boolean formula (in DIMACS format)
into its corresponding graph. Currently the only format we consider for this is
the variable-incidence graph, however other implementations such as the clause-
incidence graph are possible.

Phase 2: Second, SATGraf computes structure metrics as defined by the user.
Currently the user may choose from either the Clauset-Newman-Moore (CNM)
algorithm [5] or the online (OL) community algorithm [6], however it is possible
for the user to specify their own additional algorithms.

1 All code and data can be obtained from the SATGraf formula visualization/evolution
tool website: http://satbench.uwaterloo.ca/satgraf/index



(a) Industrial instance:
aes 16 10 keyfind 3

(b) Random instance: unif-k3-r4.267-
v421-c1796-S4839562527790587617

Fig. 1: Community structure of instances from the SAT 2013 Competition

Phase 3: Third, SATGraf uses a user-specified layout algorithm to render the graph
while maintaining the structure detected in phase 2. Currently the user may
choose from either a modified version of layout algorithm by Kamada and Kawai
(KK) [8] or the Fruch-Reingold (FR) algorithm [9]. Other “fast” layout options
include a grid or circle solution, where communities are treated as separate
graphs and use either the KK or FR layout algorithms, these communities are
then placed on a grid or circle pattern. While these options do not display the
structure as clearly, they scale better.

Phase 4: Finally, users of SATGraf can replay different stages of the evolution.
While doing this they may also hide communities, edges or variables, that are
not of interest to obtain a clearer view of those that are. To this end the user
may also zoom in on specific communities within the graphical representation,
and choose whether to hide, or colour variables that have been assigned values
at any point during the evolution. The user may also choose to export the entire
graphical evolution as a GIF file for later analysis, though this does create large
files.

The modular design of SATGraf allows for easy integration of any other structure
metric or layout algorithm for either of these categories. Figure 1 shows the graph
generated by SATGraf for two instances from the SAT 2013 competition [10]. Figure
1a is an industrial instance, and Figure 1b shows a randomly-generated instance.
Edges between variables within the same community are assigned a distinct colour,
one per community. White edges represent inter-community edges, and red edges
resulting from conflict clauses. As is evident, the industrial instance has lot more
distinct communities that can be neatly partitioned, while the randomly generated
instances typically have lots inter-community edges.

SATGraf can present the evolution of a formula by interacting with modified ver-
sions of SAT solvers. Currently only MiniSAT is supported, however C source code
is included in the project to ease integration with other solvers. MiniSAT interacts
with SATGraf’s evolution mechanism by notifying it when a variable changes value
– either by decision or propagation — and when new conflict clauses are added.



SATGraf then updates the graph by either hiding, showing or colouring edges and
nodes, or by redrawing the graph (if the user requests it). This allows users to ob-
serve the overall evolution of the structure of the formula, but also to see how each
community is affected during solution. SATGraf is open source and available at [11,
12] with an easy install version available at [13]. The project was developed in Java
and has a modified version of MiniSAT included.

3 Results

SATGraf has been tested on several industrial, hard combinatorial, and randomly-
generated formulas from the 2013 SAT competition [10]. The time taken to display
the community structure of a single instance grows with the size of the input for-
mula. This is to be expected due to the nature of the community detection and
placement algorithms — which is the most time-consuming component. The re-
sulting graphs, using the OL community detection and FR layout algorithms, can
be seen in Figure 1. The community structure of the industrial instance has much
better modularity than the one for the randomly-generated instance. This can be
verified both visually and through the modularity measure: the industrial instance
has a modularity of 0.77, while the randomly-generated one has a modularity of 0.16.
Their solve times using MiniSAT are also different; The industrial instance takes
0.076 and the randomly-generated instance times out after 5000 seconds. SATGraf
has been found to be efficient when viewing a number of different SAT instances, the
largest observed containing approximately 450,000 variables and 1.4 million clauses.
However, this utilised the “grid” layout algorithm. Unfortunately neither the num-
ber of variables, nor the number of clauses provide an accurate representation of
the running time of SATGraf, as it is the number of edges that drives most of the
workload. As such, a single clause containing 500 variables, will be more intensive
than a 40,000 3-CNF formula.

SATGraf’s evolution feature is partly shown in two pictures in Figure 2. The
SAT instance here is obtained from a feature model [14] called Fiasco that can be
downloaded from the SATGraf website [15]. A GIF of the entire evolution of Fiasco
can also be found here. We chose this SAT formula since it is a good representa-
tion of an industrial application of SAT solvers. Furthermore, this instance is small
enough so that we can actually show, in a timely manner, how the SAT solver dy-
namically morphs its graph (the instance and the generated learnt clauses). Finally,
the solvers [16, 17] solved this formula without generating too many conflicts, and
thus it was easier to make sense of the evolution of the graph of this instance.

Observing the evolution showed an interesting trend. Namely, the removal of
entire communities during the solving process. This evolution can be seen when
going from the graph of the original SAT formula in Figure 2a, to the graph after
the solver generates the first conflict shown in Figure 2b. It is easy to see that some
of the communities have completely disappeared by the absence of their associated
colour, i.e., the corresponding clauses have been satisfied.

3.1 Observation #1: VSIDS chooses High-centrality Bridge Variables

Whilst visualising industrial instances using SATGraf, we found that VSIDS was
consistently choosing decision variables that have a high number of inter-community
edges, which we call high-centrality bridge variables. For example in the SAT com-
petition formula aes 16 10 keyfind 3 98% of the first 5000 decision variables had



(a) Initial state (b) After 550 decisions

Fig. 2: Partial evolution of the fiasco formula

inter-community edges. This leads us to suspect that VSIDS is discovering the com-
munity structure implicitly whilst solving. We have found similar results for other
industrial and hard combinatorial instances from the SAT competition. It is possible
that the decision variables consistently being inter-community variables is either a
random artefact of the VSIDS heuristic, or simply that a large number of the vari-
ables in the formula had inter-community edges. However, we do not believe this
to be the case. In fact after 5000 decisions, 66% of the decision variables had more
inter-community edges than intra-community edges. This observation presents a
conjecture that can be validated independently through modifications to the VSIDS
algorithm and empirical measurements, which is the subject of current research in
our group.

3.2 Observation #2: VSIDS Moves Infrequently Between Communities

In addition to our previous observations, we observed that a high percentage of
decision variables occurred within the same communities. When considering the
aes 16 10 keyfind 3 SAT formula, 80% of the decision variables were chosen from
the same community as the previous decision variable. This would support the
hypothesis that formulas which have a good community structure are sometimes
solved one community at a time.

3.3 Observation #3: Backtracking May Incur Unnecessary Overhead

Whilst visualising the SAT formula toybox on SATGraf, we found that despite the
high level of separability of the formula (mostly distinct, unconnected communi-
ties), backtracking caused variables that were unconnected to the conflict variables
(either directly or transitively) to be reset. In most SAT formulas of interest, the
communities will not be as clearly separated as in the toybox example. However,
we present the conjecture that in some situations the backtracking of CDCL solvers
results in more work being done than is necessary. We suggest that a potential so-
lution to this would be a selective backtracking algorithm, that determines which
variables are affected by a backtrack. While this would require additional time dur-
ing solution to determine affected variables, in instances with higher solve times, it
could prove effective.



Tool Interactive Evolution Community 3D Implication

DPVis[18] 3 3 7 7 3

GraphInsight[19] 3 7 7 3 7

iSat[20] 7 3 7 7 7

GraphViz[21] 7 7 7 7 7

SATGraf 3 3 3 7 3

Table 1: Comparison of SAT Visualization tools

4 Related Work

SATGraf is the only tool that we know of that has both visualization capabilities to
view the “user-defined structure” of SAT instances and evolution feature that shows
how this structure is morphed during solution. While other tools [18, 20, 19, 21] have
visualization or evolution capabilities, they do not allow for user defined structure,
nor do they show how the solver morphs this structure. Instead, the choice of graph
structure of SAT instances is hard-coded in these tools. Additionally, we support
community structure, while the tools we compare against do not. Table 1 highlights
the differences between visualization tools that we found. Those differences range
across a handful of categories such as interactive (ability to hide/show nodes, edges
or other structural information); evolution (ability to see the evolution of the SAT
formula); structure (ability to display the community (or any other) structure); 3D
(three dimensional capability) and implication (can generate the implication graph).
DPVis [18], is the closest to SATGraf in terms of features. It is a graphing tool
designed to expose how a CDCL solver morphs a SAT instance as it is being solved.
It offers a number of features such as multiple layout algorithms, the ability to set
specific values on literals displayed in the graph, and performing unit propagation.
However, unlike SATGraf it does not allow the user to specify the formula structure
(e.g., community structure), nor does it allow the user to specify a non-included
real-world solver as the evolution engine. DPVis uses a built-in implementation of
the DPLL algorithm, along with a hard coded interface to MiniSAT to display the
evolution, whereas SATGraf uses a user provided real world solver. While currently
only two solvers support this technique (MiniPure and MiniSAT), it is possible
for the user to implement this on any solver, using the provided API. Each tool
presented in Table 1 has different strengths and weaknesses. However, the only tool
that can accomplish visualizing additional structure of a SAT formula, both in its
original state and while being solved by a SAT solver, is SATGraf.

5 Conclusion

SATGraf presents a way to visualise a SAT instance’s community structure. Fur-
thermore, SATGraf has the ability to dynamically graph the community structure
of a CDCL SAT solver’s progress while solving a SAT formula. These features were
shown to be unique to SATGraf when compared to various similar tools. These new
capabilities yielded hypotheses regarding the correlation between the community
structure of input instances and performance of CDCL SAT solvers. We found that
the better the modularity is, the less time the SAT solver needs, and the CDCL
SAT solver often seems to solve SAT formulas one community at a time.



References

1. Edmund Clarke, Muralidhar Talupur, Helmut Veith, and Dong Wang. Sat based pred-
icate abstraction for hardware verification. In Theory and Applications of Satisfiability
Testing, pages 78–92. Springer, 2004.

2. Armin Biere, Alessandro Cimatti, Edmund M Clarke, Masahiro Fujita, and Yunshan
Zhu. Symbolic model checking using sat procedures instead of bdds. In Proceedings
of the 36th annual ACM/IEEE Design Automation Conference, pages 317–320. ACM,
1999.

3. Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Laurent
Simon. Impact of community structure on SAT solver performance. In 17th Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT), Vienna,
Austria, 2014.

4. C. Ansotegui, J. Giraldez-Cru, and J. Levy. The community structure of SAT formu-
las. In Theory and Application of Satisfiability Testing - SAT 2012, pages 410–423.
Springer, 2012.

5. Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community struc-
ture in very large networks. Physical review E, 70(6):066111, 2004.

6. Wangsheng Zhang, Gang Pan, Zhaohui Wu, and Shijian Li. Online community de-
tection for large complex networks. In Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence, pages 1903–1909. AAAI Press, 2013.

7. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks, 2003. http://arxiv.org/pdf/cond-mat/0308217.pdf, last viewed December
2013.

8. Tomihisa Kamada and Satoru Kawai. A general framework for visualizing abstract
objects and relations. ACM Trans. Graph., 10(1):1–39, January 1991.

9. Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed
placement. Software: Practice and experience, 21(11):1129–1164, 1991.

10. SAT competition 2013, 2013. http://satcompetition.org/2013/, last viewed January
2014.

11. Z. Newsham, W. Lindsay, J. Liang, V. Ganesh, and K. Fischmeister, S.and Czarnecki.
Satgraf sat formula visualization tool. http://bitbucket.org/znewsham/satgraf.

12. Z. Newsham, W. Lindsay, J. Liang, V. Ganesh, and K. Fischmeister, S.and Czarnecki.
Satgraf structure source. http://bitbucket.org/znewsham/satlib.

13. Z. Newsham, W. Lindsay, J. Liang, V. Ganesh, and K. Fis-
chmeister, S.and Czarnecki. Satgraf visualisation executable.
https://bitbucket.org/znewsham/satgraf/downloads/satgraf.zip.

14. Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. Feature-oriented domain analysis (FODA) feasibility study. Technical report,
DTIC Document, 1990.

15. Z. Newsham, W. Lindsay, J. Liang, V. Ganesh, and K. Fischmeister, S.and Czarnecki.
Satgraf: Results, 2014. http://satbench.uwaterloo.ca/satgraf/index, last viewed Jan-
uary 2015.

16. T. Taiwan and H. Wang. Minipure, 2013. http://edacc4.informatik.uni-
ulm.de/SC13/solver-description-download/134, last viewed January 2014.

17. Niklas Een and Niklas Sörensson. Minisat: A SAT solver with conflict-clause mini-
mization. SAT, 5, 2005.

18. Carsten Sinz and Edda-Maria Dieringer. DPvis–a tool to visualize the structure of
SAT instances. In Theory and Applications of Satisfiability Testing, pages 257–268.
Springer, 2005.

19. Carlo Nicolini and Michele Dallachiesa. Graphinsight: An interactive visualization
system for graph data exploration. http://www.graphinsight.com.

20. Ezequiel Orbe, Carlos Areces, and Gabriel Infante-López. isat: structure visualization
for SAT problems. In Logic for Programming, Artificial Intelligence, and Reasoning,
pages 335–342. Springer, 2012.



21. A. Bilgin, J. Ellson, E. Gansner, O. Smyrna, Y. Hu, and S. North. Graphviz - graph
visualization software. http://www.graphviz.org/.


