Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz Conor F. Madigan
Department of EECS Department of EECS
UC Berkeley MIT

moskewcz@alumni.princeton.edu cmadigan@mit.edu

ABSTRACT

Bodean Satisfiability is probably the most studied of
combinatorial optimization/seach problems. Significant effort
has been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Artificia Intelligence (Al). This gudy has culminated in the
development of several SAT packages, both proprietary and in
the puldic domain (e.g. GRASP, SATO) which find significant
use in both reseach and industry. Most existing complete solvers
are variants of the Davis-Putnam (DP) search algorithm. In this
paper we describe the development of a new complete solver,
Chaff, which achieves dgnificant performance gains through
careful engineeing o all aspects of the seach — especialy a
particularly efficient implementation of Bodean constraint
propagation (BCP) and a novel low overheal decision strategy.
Chaff has been able to dbtain one to two arders of magnitude
performance improvement on dfficult SAT benchmarks in
comparison with other solvers (DP or otherwise), including
GRASPand SATO.

Categories and Subject Descriptors
J6 [Computer-Aided Engineering]: Computer-Aided Design.

General Terms
Algarithms, Verification.

Keywords

Bodean satisfiability, design verification.

1. Introduction

The Bodean Satisfiability (SAT) problem consists of
determining a satisfying variable asdgnment, V, for a Bodean
function, f, or determining that no such V exists. SAT is one of
the central NP-complete problems. In addition, SAT lies at the
core of many practical application domains including EDA (e.g.
automatic test generation [10] and logc synthesis [6]) and Al
(e.g. automatic theorem proving). As a result, the subject of
practicall SAT solvers has received considerable reseach
attention, and numerous lver algorithms have been proposed
and implemented.

Ying Zhao, Lintao Zhang, Sharad Malik
Department of Electrical Engineering
Princeton University

{yingzhao, lintaoz, sharad}@ee.princeton.edu

Many pulicly available SAT solvers (e.g. GRASP [§],
POSIT [5], SATO [13], rel_sat [2], WakSAT [9]) have been
developed, most employing some combination of two main
strategies: the Davis-Putnam (DP) backtrack search and reuristic
local seach. Heuristic local seach techniques are not
guaranteed to be complete (i.e. they are not guaranteed to find a
satisfying assgnment if one exists or prove unsatisfiability); as a
result, complete SAT solvers (including aurs) are based almost
exclusively on the DP seach algorithm.

1.1 Problem Specification

Most solvers operate on problems for which f is gecified in
conjunctive norma form (CNF). This form consists of the
logcal AND of one or more clauses, which consist of the logical
OR of one or more literals. The literal comprises the
fundamental logical unit in the problem, being merely an
instance of a variable or its complement. (In this paper,
complement is represented by -.) All Bodean functions can be
described in the CNF format. The alvantage of CNF is that in
this form, for f to be satisfied (sat), each individual clause must
be sat.

1.2 Basic Davis-Putnam Backtrack Search

We start with a quick review of the basic Davis-Putnam
backtrack seach. This is described in the foll owing pseudo-code
fragment:

while (true) {
if (Idecide()) // if no unassigned vars
return(satisifiable);
while (tbep()) {
if (IresolveConflict())
return(not satisfiable);
}

}

bool resolveConflict() {
d = most recent decision not ‘tried both
ways’;

if (d == NULL) // no such d was found
return false;

flip the value of d;

mark d as tried both ways;
undo any invalidated implications;
return true;

The operation of decide() isto select a variable that is
not currently assgned, and give it a value. This variable
assgnment is referred to as a decision. As each new decision is
made, a record of that decision is pushed onto the decision stack.

This function will return false if ho unasggned variables remain
and true otherwise.

The operation of bcp(), which carries out Bodean
Constraint Propagation (BCP), is to identify any variable
assgnments required by the current variable state to satisfy f.
Recall that every clause must be sat, for f to be sat. Therefore, if
a clause consists of only literals with value 0 and one unassgned
literal, then that unasdgned literal must take on a value of 1 to
make f sat. Clausesin this date ae said to be unit, and thisrule
is referred to as the unit clause rule. The necessry variable
assgnment associated with giving the unasdgned literal a value
of 1 isreferred to as an implication. In general, BCP therefore
consists of the identification of unit clauses and the credion of
the aswociated implications. In the pseudo-code from above,
bcp() carries out BCP transitively urtil either there ae no
more implications (in which case it returns true) or a conflict is
produced (in which case it returnsfalse). A conflict ocaurs when
implications for setting the same variable to both 1 and 0 are
produced.

At the time adecision is made, some variable state exists
and is represented by the decision stack. Any implication
generated following a new decision is directly triggered by that
decision, but predicated on the entire prior variable state. By
asciating each implication with the triggering decision, this
dependency can be compactly recorded in the form of an integer
tag, referred to as the decision level (DL). For the basic DP
seach, the DL is equivalent to the height of the decision stack at
the time the impli cation is generated.

To explain what handl eConflict () does, we note that
we can invalidate dl the implications generated on the most
recent decision level simply by flipping the value of the most
recent decision assgnment. Therefore, to ded with a conflict,
we can just undo al those implications, flip the value of the
decision assgnment, and allow BCP to then proceed as normal.
If both values have drealy been tried for this decision, then we
backtrack through the decision stack urtil we excounter a
decision that has not been tried both ways, and proceed from
there in the manner described above. Clealy, in backtracking
through the decision stack, we invalidate any implications with
decision levels equal to a greder than the decision level to
which we backtracked. If no decision can be found which has
not been tried both ways, that indicates that f is not satisfiable.

Thus far we have focused on the overall structure of the
basic DP seach agorithm. The following sections describe
feaures gecific to Chaff.

2. Optimized BCP

In practice, for most SAT problems, a major potion (greaer
than 90% in most cases) of the solvers' runtimeis gent in the
BCP process Therefore, an efficient BCP engine is key to any
SAT solver.

To restate the semantics of the BCP operation: Given a
formula and set of assgnments with DLs, deduce ay necessary
assgnments and their DLs, and continue this processtransitively
by adding the necessary assgnments to the initial set. Necessary
asggnments are determined exclusively by repeaed appli cations
of the unit clause rule. Stop when no more necessary
assgnments can be deduced, or when a conflict is identified.

For the purposes of this discusgon, we say that a clause is
implied iif al but one of its literals is assgned to zero. So, to
implement BCP efficiently, we wish to find away to quickly visit
al clauses that become nemy implied by a single aldition to a
set of assgnments.

The most intuitive way to do this is to simply look at every
clause in the database clauses that contain a literal that the
current asggnment sets to 0. In effect, we would kegy a counter
for each clause of how many value O literas are in the clause,
and modify the counter every time aliteral in the clauseis st to
0. However, if the clause has N literals, there is redly no reason
that we need to visit it when 1, 2, 3, 4, ..., N-1literals are set to
zero. We would like to only visit it when the “number of zero
literals’ counter goes from N-2 to N-1.

As an approximation to this goal, we can pick any two
literals not asdgned to O in each clause to watch at any given
time. Thus, we can guaranteethat until one of those two literals
is asdgned to O, there cannot be more than N-2 literals in the
clause assgned to zero, that is, the clause is not implied. Now,
we nedal only visit each clause when one of its two watched
literals is assgned to zero. When we visit each clause, one of
two conditions must hold:

(1) Thecdauseisnot implied, andthus at least 2 literals are not
assgned to zero, including the other currently watched
literal. This means at least one non-watched literal is not
asdgned to zero. We choose this literal to replace the one
just asdgned to zero. Thus, we maintain the property that
the two watched literals are not assgned to 0.

(2) The cdause is implied. Follow the procedure for visiting an
implied clause (usualy, this will generate a new
impli cation, unlessthe unlessthe clause is arealy sat). One
should take note that the implied variable must always be
the other watched literal, since, by definition, the clause
only has one literal not assgned to zero, and one of the two
watched literalsis now asggned to zero.

It is invariant that in any state where aclause can become
newly implied, both watched literals are not assgned to 0. A key
benefit of the two literal watching scheme is that at the time of
backtracking, there is no need to modify the watched literals in
the clause database. Therefore, unasggning a variable can be
done in constant time. Further, reasdgning a variable that has
been recently assgned and uressgned will tend to be faster than
the first time it was assgned. This is true because the variable
may only be watched in a small subset of the clauses in which
was previously watched. This dgnificantly reduces the total
number of memory accesses, which, exacerbated by the high data
cache miss rate is the main bottleneck for most SAT
implementations. Figure 1 illustrates this technique. It shows
how the watched literals for a single clause change under a series
of assgnments and uressgnments. Note that the initial choice of
watched literals is arbitrary, and that for the purposes of this
example, the exact detail s of how the sequence of assgnments
and uressgnmentsis being generated isirrelevant.

One of the SATO[13] BCP schemes has ©me simil arities to
this one in the sense that it also watches two literals (called the
head and tail literas by its authors) to detect unit clauses and
conflicts. However, our algarithm is different from SATO's in

that we do not require afixed drection of motion for the watched
literals while in SATO, the heal literal can only move towards
tail lit eral and vice versa. Therefore, in SATO, unassgnment has
the same compl exity as assgnment.

3. Variable State Independent Decaying Sum
(VSIDS) Decision Heuristic

Decision assgnment consists of the determination of which
new variable and state should be selected each time deci de()
is called. A lack of clea statistical evidence supporting ane
decision strategy over others has made it difficult to determine
what makes a goad decision strategy and what makes a bad one.
To explain this further, we briefly review some common
strategies. For a more comprehensive review of the dfect of
decision strategies on SAT solver performance, see[7] by Silva.

The simplest posgble strategy is to simply select the next
decision randomly from among the unasdgned variables, an
approach commonly denoted as RAND. At the other extreme,
one can employ a heuristic involving the maximization of some
moderately complex function of the current variable state and the
clause database (e.g. BOHM and MOMSs heuristics).

One of the most popular strategies, which falls omewhere
in the midde of this gectrum, is the dynamic largest individual
sum (DLIS) heuristic, in which one selects the literal that
appeas most frequently in urresolved clauses. Variations on
this grategy (e.g. RDLIS and DLCS) are dso posshle. Other
slightly more sophisticated heuristics (e.g. JW-0OS and JE-TS)
have been developed as well, and the reader is referred again to
[7] for afull description of these other methods.

Clealy, with so many strategies avail able, it isimportant to
understand how best to evaluate them. One can consider, for
instance, the number of decisions performed by the solver when
processng a given problem. Since this gatistic has the fed of a
goad metric for analyzing decision strategies — fewer decisions
ought to mean smarter decisions were made, the reasoning gaes
— it has been used almost exclusively as the comparator in the
scant literature on the subject. However, not all decisions yield
an equal number of BCP operations, and as a result, a shorter
sequence of decisions may actually leal to more BCP operations
than a longer sequence of decisions, begdng the question: what
does the number of decisions redly tell us? The same agument
applies to statistics involving conflicts. Furthermore, it is also
important to recognize that not al decision strategies have the
same computational overhead, and as a result, the “best”
decision strategy — even if that determination is based on a good
combination of the available computation statistics — may
actually be the slowest if the overhead is sgnificant enough. All
we redly want to know is which strategy is fastest, regardless of
the computation statistics. No clea answer exists in the
literature, though based on [7] DLIS would appea to be asolid
all-around strategy. However, even RAND performs well on the
problems described in that paper. While developing aur solver,
we implemented and tested all of the strategies outlined above,
and found that we could design a considerably better strategy for
the range of problems on which we tested our solver. This
strategy, termed Variable State Independent Decaying Sum
(VIIDS) is described as foll ows:

(1) Eachvariablein each polarity has a counter, initiali zed to O.

(2) When a clause is added to the database, the counter
asciated with each literal in the clause is incremented.

(3) The (unasdgned) variable and polarity with the highest
counter is chosen at each decision.

(4) Ties are broken randomly by default, although this is
configurable

(5) Periodically, all the counters are divided by a constant.

Also, in order to choose the variable with the highest
counter value even more quickly at decision time, a list of the
unassgned variables sorted by counter value is maintained
during BCP and conflict analysis (using an STL set in the current
implementation).

Overall, this grategy can be viewed as attempting to satisfy
the conflict clauses but particularly attempting to satisfy recent
conflict clauses. Since difficult problems generate many
conflicts (and therefore many conflict clauses), the conflict
clauses dominate the problem in terms of literal count, so this
approach dstinguishes itself primarily in how the low pass
filtering o the statistics (indicated by step (5)) favors the
information generated by recent conflict clauses. We believe this
is valuable because it is the conflict clauses that primarily drive
the seach process on dfficult problems. And so this decision
strategy can be viewed as directly coupling that driving force to
the decision process

Of course, another key property of this drategy is that since
it is independent of the variable state (except insofar as we must
choose an uressgned variable) it has very low overhea, since
the statistics are only updated when there is a conflict, and
correspondingly, a new conflict clause. Even so, decision related
computation is gill acoounts for ~10% of the runtime on some
difficult instances. (Conflict analysis is aso ~10% of the run-
time, with the remaining ~80% of the time spent in BCP.)
Ultimately, employing this grategy dramatically (i.e. an order of
magnitude) improved performance on al the most difficult
problems without hurting performance on any of the simpler
problems, which we viewed as the true metric of its sucoess

4. Other Features

Chaff employs a conflict resolution scheme that is
phil osophically very similar to GRASP, employing the same type
of conflict anaysis, conflict clause aldition, and UIP-
identification. There ae some differences that the authors
believe have dramatically enhanced the simplicity and elegance
of the implementation, but due to space limitations, we will not
delve into that subject here.

4.1 Clause Deletion

Like many other solvers, Chaff supports the deletion of
added conflict clauses to avoid a memory explosion. However,
since the method for doing so in Chaff differs somewhat from the
standard method, we briefly describe it here. Essentialy, Chaff
uses heduled lazy clause deletion. When each clause is added,
it is examined to determine & what point in the future, if any, the
clause should be deleted. The metric used is relevance, such that
when more than N (where N is typically 100-200) literals in the
clause will become unassgned for the first time, the clause will
be marked as deleted. The atua memory assciated with
deleted clauses is recovered with an infrequent monolithic
database compaction step.

4.2 Redtarts

Chaff also employs afeaure referred to as restarts. Restarts
in general consist of a halt in the solution process and a restart
of the analysis, with some of the information gained from the
previous analysis included in the new one. As implemented in
Chaff, arestart consists of cleaing the state of al the variables
(including all the decisions) then procealing as normal. As a
result, any still -relevant clauses added to the clause database &
some time prior to the restart are still present after the restart. It
is for this reason that the solver will not simply repea the
previous analysis following a restart. In addition, one can add a
certain amourt of transient randomnessto the decision procedure
to aid in the selection of a new seach path. Such randomnessis
typically small, and lasts only a few decisions. Of course, the
frequency of restarts and the characteristics of the transient
randomness are configurable in the final implementation. It
should be noted that restarts impact the completeness of the
agorithm. If all clauses were kept, however, the dgorithm would
still be complete, so completeness could be maintained by
increasing the relevance parameter N slowly with time. GRASP
uses a similar strategy to maintain compl etenesshby extending the
restart period with each restart (Chaff also does this by default,
since it generally improves performance).

Note that Chaff’'s restarts differ from those employed by,
for instance, GRASP in that they do not affect the current
decision statistics. They mainly are intended to provide achance
to change ealy decisions in view of the current problem state,
including all added clauses and the current seach path. With
default settings, Chaff may restart in this snse thousands of
times on a hard instance (sat or unsat), athough similar results
can often (or at least sometimes) be ahieved with restarts
compl etely disabled.

5. Experimental Results

On smaller examples with relatively inconsequential run
times, Chaff is comparable to any other solver. However, on
larger examples where other solvers grugde or give up, Chaff
dominates by completing in upto oneto two orders of magnitude
less time than the best pulic domain solvers.

Chaff has been run on and compared with other solvers on
amost a thousand lkenchmark formulas. Obviously, it is
imposgble to provide complete results for each individual
benchmark. Instead, we will present summary results for each
class of benchmarks. Comparisons were done with GRASP, as
well as SATO. GRASP provides for a range of parameters that
can be individually tuned. Two different recommended sets of
parameters were used (GRASRA) and GRASHB)). For SATO,
the default settings as well as —g100 (which restricts the size of
added clauses to be 100 literals as opposed to the default of 20)
were used. Chaff was used with the default cherry.smj
configuration in all cases, except for the dimacs pret* instances,
which required a single parameter change to the decision
strategy. All experiments were done on a 4 CPU 336 Mhz
UltraSparc Il Solaris machine with 4GB main memory. Memory
usage was typicaly 50-150MB depending on the run time of
each instance.

Table 1 provides the summary results for the DIMACs [4]
benchmark suite. Each row is a set of individual benchmarks
grouped by category. For GRASP, both options resulted in

several benchmarks aborting after 100secs, which was aufficient
for both SATO and Chaff to complete dl i nstances. On examples
that the others also complete, Chaff is comparable to the others,
with some superiority on the hole and parl6 classes, which seem
to be among the more difficult ones. Overal, most of the
DIMACs benchmarks are now considered easy, as there ae a
variety of solvers that excel on various subsets of them. Note that
some of the DIMACS benchmarks, such as the large 3-sat
instance sets ‘f’ and ‘g, as well as the par32 set were not used,
since none of the solvers considered here performs well on these
benchmark classes.

The next set of experiments was done using the CMU
Benchmark Suite [11]. This consists of hard problems, satisfiable
and ursatisfiable, arising from verification of microprocessors
(for a detailed description of these benchmarks and Chaff’'s
performance on them, see[12]). It is here that Chaff’s prowess
begins to show more clealy. For SSS1.0, Chaff is about an
order of magnitude faster than the others and can complete dl
the examples within 10Gsecs. Both GRASP and SATO abort the
5 herd ursat instances in this st, which are known to take both
GRASP and SATO significantly longer to complete than the sat
instances. Results on using randomized restart techniques with
the newest version of GRASP have been reported on a subset of
these examples in [1]. We have been ureble to reproduce dl of
those results, due to the unavailability of the necessary
configuration profiles for GRASP (again, see [12]). However,
comparing our experiments with the reported results ows the
superiority of Chaff, even given a generous margin for the
differences in the testing environments. For SSS1.0.a Chaff
completed all 9 of the benchmarks — SATO and GRASPcould do
only two. For SSSSAT.1.0, SATO aborted 32 of the first 41
instances when we decided to stop running any further instances
for lack of hope and limited compute cycles. GRASP was not
competitive & all on this st. Chaff again completed al 100in
less than 100Gecs, within a 100sec limit for each instance. In
FVP-UNSAT.1.0 both GRASP and SATO could only complete
one eay example and aborted the next two. Chaff completed all
4. Finaly for VLIW-SAT.1.0 both SATO and GRASP aborted
the first 19 of twenty instances tried. Chaff finished al 100in
lessthan 10000seconds total.

For many of these benchmarks, only incompl ete solvers (not
considered here) can find solutions in time comparable to Chaff,
and for the harder unsatisfiable instances in these benchmarks,
no solver the aithors were ale to run was within 10xof Chaff’s
performance, which prohibited running them on the harder
problems. When enough information is released to run GRASP
and locally reproduce results as in [1], these results will be
revisited, although the results given would indicate that Chaff is
gtill a full 2 orders of magnitude faster on the hard ursat
instances, and at least 1 order of magnitude faster on the
satisfiable instances.

7. Conclusions

This paper describes a new SAT solver, Chaff, which has
been shown to be & least an order of magnitude (and in severa
cases, two aders of magnitude) faster than existing pubic
domain SAT solvers on dfficult problems from the EDA domain.
This geedupis not the result of sophisticated leaning strategies
for pruning the seach space, but rather, of efficient engineaing

of the key steps involved in the basic seach agorithm.
Specifically, this eaupis derived from:

* ahighly optimized BCP agarithm, and

e adecision strategy highly optimized for speed, as well
as focused on recently added clauses.

8. References

[1] Baptista, L., and Marques-Silva, J.P., “Using Randomization
and Leaning to Solve Hard Red-World Instances of
Satisfiability,” Proceadings of the 6th International Conference
on Principles and Practice of Constraint Programming (CP),
September 2000

[2] Bayardo, R. and Schrag, R.: Using CSPlook-back techniques
to solve red-world SAT instances, in Proc. of the 14th Nat.
(US) Conf. on Artificia Intelli gence (AAAI-97), AAAI
PresgThe MIT Press 1997, pp. 203-208

[3] Biere, A., Cimatti, A., Clarke, E.M., and Zhy, Y., “Symbolic
Model Checking without BDDs,” Tods and Algarithms for the
Analysis and Construction of Systems (TACAS99), number
1579in LNCS. Springer-Verlag, 1999
(http://www.cs.cmu.edw/~model check/bme/bmc-
benchmarks.html)

[4] DIMACS benchmarks avail able &
ftp://dimacs.rutgers.edu/publchall enge/sat/benchmarks

[5] Freeman, J.W., “Improvements to Propositi onal Satisfiability
Seach Algarithms,” Ph.D. Dissertation, Department of

Computer and Information Science, University of
Pennsylvania, May 1995

[6] Kunz, W, and Sotoffel, D., Reasoning in Bodean Networks,
Kluwer Academic Publishers, 1997

[7] Marques-Silva, J.P., “ The Impact of Branching Heuristicsin
Propositional Satisfiability Algorithms,” Proceadings of the
9th Portuguese Conference on Artificia Intelli gence (EPIA),
September 1999

[8] Marques-Silva, J. P., and Sakall ah, K. A., “GRASP. A Seach
Algoarithm for Propositi onal Satisfiability,” IEEE Transactions
on Computers, vol. 48, 506-521, 1999

[9] McAllester, D., Selman, B. and Kautz, H.: Evidence for
invariantsin local search, in Proceedings of AAAT'97, MIT
Press 1997, pp. 321-326.

[10] Stephan, P., Brayton, R., and Sangiovanni-Vencentelli, A.,
“Combinational Test Generation Using Satisfiability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 15, 11671176 1996

[11 Velev, M., FVP-UNSAT.1.0, FVP-UNSAT.2.0, VLIW-
SAT.1.0, SSSSAT.1.0, Superscalar Suite 1.0, Superscalar
Suite 1.0a, Avail able from: http://www.ece.cmu.edu/~mvelev

[12] Velev, M. and Bryant, R., “Effective Use of Bodean
Satisfiability Procedures in the Formal Verification of
Superscalar and VLIW Microprocessors,” In Proceeadings of
the Design Automation Conference, 2001

[13] Zhang, H., “SATO: An efficient propositional prover,”
Procedlings of the International Conference on Automated
Deduction, pages 272-275, July 1997.

v v VEL v v
M|V [V Vi | Vo | s | === || v |-+ | was | Vi | |
i Vis0
J Inglicatia V=1 U VAl
¥ V0 ¥ ¥ Vir0
_Vl V4 'V7 Vll V12 V15 B — _Vl V4 'V7 Vll V12 V15
Corflict, Baddradk.
VisX VieX VAX VX vz
v v Vil v v
_Vl V4 'V7 VJl V12 V15 [— _Vl V4 'V7 VJl V12 V15
V| Literal with value X (unessigned) V0

@ Literal with value O
Vi| Literal vithvalue 1

-Vl V4 'V7 VJ_'L V12 V15

Hguel BAPusgtwowetchedliterds

All times are in seconds.
| = total number of instances in set

A = number of instances aborted. If a number n in () follows
this, then only n instances in the set were attempted due to
frequency of aborts.

Time = total user time for search, including aborted instances
* = SATO was run with (B) for this set.

= GRASP was run with (B) for this set.

" = Ch aff was run with (B) for this set.

All solvers run with (A) options unless marked. Shown result is
for whichever set of options was better for each set.

GRASP options (A):
+T100 +B10000000 +C10000000 +S10000
+V0 +g40 +rt4 +dMSMM +dr5
GRASP options (B):
+T100 +B10000000 +C10000000 +S10000
+g20 +rt4 +dDLIS
SATO options (A): - gl1l00
SATO options (B): [default]
Chaff options (A): cherry.smj config
Chaff options (B): cherry.smj config
plus maxLitsForConfDriven = 10

Table 1 GRASP SATO Chaff

| Time A Time A Time A
iil6 10| 241.1# 1 1.3 0 6.2 0
ii32 17 2.3# 0 2.1 0 0.6 0
ii8 14 1.2 0 0.2 0 0.1 0
aim200 24 6.5 0 0.3 0 0.3 0
aim100 24 0.6# 0 0.1 0 0.1 0
pret 8 5.9# 0 0 0 0.7 0
Par8 10 0.1# 0 0.1 0 0.1 0
ssa 8 2.7# 0 4.2 0 0.3 0
inh 50 5.7# 0 0.7 0 0.6 0
dubois 13 0.3 0 0.1 0 0.2 0
hole 5 221.8# 2 99.9% 0 97.6 0
parlé 10[845.9# 7 256* 0 42.6 0
Abort timeout was 100s for these sets.
Table 2 GRASP SATO Chaff

| Time A Time A Time

SSS 1.0 48 770 5& 16795 5 48 0
SSS 1.0a 8| 6031 6 790 6& 20 0
SSS SAT 1.0 100 33708 32 (41) 457 0
FVP- UNSAT 1.0 4] 2018 23 2007 23 735 0
VLIW- SAT 1.0 100 19 (20) 19 (20) 3143 0
Abort timeout was 100 Os for these sets, ex ceptfor& ‘’'ed sets

wherei t was 100s.

