
1/54

Constraint Programming
and Abstract Intepretation

Séminaire Master Science Informatique
Rennes

4 novembre 2019

Charlotte Truchet

LS2N, UMR 6004, Université de Nantes

2/54

Based on joint works with

Marie Pelleau Ghiles Ziat Antoine Miné
MCF U. Nice PhD U. Paris 6 Prof. U. Paris 6

Pierre Talbot Mathieu Vavrille
Post-doc U. Nantes Master ENS Lyon

3/54

Outline

Introduction to CP

Complete solving
Consistency
Backtrack search

Abstract solving
Abstract Domains for CP
Octagons
Combining abstract domains

4/54

CP on an example: Urban planning

4/54

CP on an example: Urban planning

4/54

CP on an example: Urban planning

For each urban form, we know:
I the surface they need, as a number of blocks,
I a series of preferences,

industries like rivers and roads, schools have to be near housing areas, etc

I some hard constraints.
a housing block has to be at a walking distance from a park, some urban forms

must have a minimum size, etc

4/54

CP on an example: Urban planning

4/54

CP on an example: Urban planning

4/54

CP on an example: Urban planning

4/54

CP on an example: Urban planning

5/54

Sustain project

Sustain Projet, simulation on Marne-la-Vallée,
a city of 8728 hectares, 230 000 inhabitants, ∼ 10 000 cells.

PhD of Bruno Belin, 2011-2014

6/54

Constraint Programming

In practice:
I combinatorial problem:

I we need to make choices,
I choices may have consequences long after

they have been made,
I it must be possible to revise the choices (mark them).

I declarative problem:
I checking is easy, based on rules or user knowledge,
I efficiently building is difficult.

7/54

CP

Constraint Programming (CP) is both:
AI an efficient tool for declarative programming,

OR a series of algorithms for combinatorial (sub)structures.

Many applications on a wide range of problems:

I logistics/planning: vehicle routing, nurse roastering, matching...

I sustainable development: energy optimization, lifetime...

I arts, music, computer graphics: automatic harmonization, CAD...

I verification/software engineering: test generation, floating point
abstractions...

I medicine, football games, cryptography, ...

8/54

Definitions

A variable is an unknown of the problem. It has a given domain,
set of values the variable can take.

8/54

Definitions

A variable is an unknown of the problem. It has a given domain,
set of values the variable can take.

A constraint is a logical relation on variables.

8/54

Definitions

A variable is an unknown of the problem. It has a given domain,
set of values the variable can take.

A constraint is a logical relation on variables.

A consistent domain for a given constraint is a domain which
does not contain infeasible values.

9/54

Sustain project

In collaboration with urban planners from EPAMarne
I model of the problem based on urban planners’ expertise,
I solver based on a parallelized local search algorithm,
I interactive mode to re-compute partially modified solutions.

PhD of Bruno Belin
collaboration with Marc Christie, Frédéric Benhamou

10/54

Sustain project

11/54

Other examples of real-life applications

Placement of VMs on real machines (BtrPlace, Entropy
project), solver Choco

11/54

Other examples of real-life applications

Planning of medical examinations (radio, etc), Medicalis, solver
Choco

11/54

Other examples of real-life applications

Computation of geometrical measures in CAO, DaoDesign
(free), solver Choco

11/54

Other examples of real-life applications

Scheduling for the Philae robot (for instance, data transfer) with
ressource constraints (memory, energy).

12/54

Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is given by:
I variables V1...Vn (n fixed),
I domains D1...Dn, where Di is the set of values that variable

Vi can take,
often finite subsets of N, or subsets of R,

I constraints C1...Cp, logical relations on the variables.

A solution of the problem is an instanciation of values of the
domains, to the variables, such that the constraints are
satisfied.

13/54

Constraint Satisfaction Problem

For continuous variables, if solutions are not
computer-representable, a solution can be given

I by an over-approximation of the solution set (complete
solver),

I by an inner-approximation (correct solver).

14/54

Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,

V1 + 7 = V3,
V1 ∗ V3 < 10∑

i Vi < M

I global constraints:

I on graphs : tree, forest, circuit...
I on words: regular, cost-regular, ...
I for practical reasons : element, table...
I specific to common problems : cumulative, geost,
I on cardinality : alldifferent, nvalue, atleast, gcc...

14/54

Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,
I global constraints:

I on graphs : tree, forest, circuit...
I on words: regular, cost-regular, ...
I for practical reasons : element, table...
I specific to common problems : cumulative, geost,
I on cardinality : alldifferent, nvalue, atleast, gcc...

14/54

Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,
I global constraints:

I on graphs : tree, forest, circuit...

I on words: regular, cost-regular, ...
I for practical reasons : element, table...
I specific to common problems : cumulative, geost,
I on cardinality : alldifferent, nvalue, atleast, gcc...

14/54

Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,
I global constraints:

I on graphs : tree, forest, circuit...
I on words: regular, cost-regular, ...

I for practical reasons : element, table...
I specific to common problems : cumulative, geost,
I on cardinality : alldifferent, nvalue, atleast, gcc...

14/54

Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,
I global constraints:

I on graphs : tree, forest, circuit...
I on words: regular, cost-regular, ...
I for practical reasons : element, table...

I specific to common problems : cumulative, geost,
I on cardinality : alldifferent, nvalue, atleast, gcc...

14/54

Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,
I global constraints:

I on graphs : tree, forest, circuit...
I on words: regular, cost-regular, ...
I for practical reasons : element, table...
I specific to common problems : cumulative, geost,

I on cardinality : alldifferent, nvalue, atleast, gcc...

14/54

Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,
I global constraints:

I on graphs : tree, forest, circuit...
I on words: regular, cost-regular, ...
I for practical reasons : element, table...
I specific to common problems : cumulative, geost,

I on cardinality : alldifferent, nvalue, atleast, gcc...

14/54

Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,
I global constraints:

I on graphs : tree, forest, circuit...
I on words: regular, cost-regular, ...
I for practical reasons : element, table...
I specific to common problems : cumulative, geost,
I on cardinality : alldifferent, nvalue, atleast, gcc...

14/54

Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,
I global constraints:

I on graphs : tree, forest, circuit...
I on words: regular, cost-regular, ...
I for practical reasons : element, table...
I specific to common problems : cumulative, geost,
I on cardinality : alldifferent, nvalue, atleast, gcc...

Nearly all global constraints are indexed in the Global Constraint
Catalog, with a common format and all the bibliography.
http://sofdem.github.io/gccat/

http://sofdem.github.io/gccat/

15/54

Outline

Introduction to CP

Complete solving
Consistency
Backtrack search

Abstract solving

16/54

Consistency on finite domains

A constraint C(V1...Vn) is generalized arc-consistent (GAC) for
domains D1...Dn iff for every variable Vi , for every value v i ∈ Di ,
there exist values
v1 ∈ D1, ..., v i−1 ∈ Di−1, v i+1 ∈ Di+1, ..., vn ∈ Dn such that
C(v1, ...vn).

A constraint C(V1...Vn) is bound-consistent (BC) for domains
D1...Dn iff the bounds of the domains are consistent (as defined
above).

16/54

Consistency on finite domains

A constraint C(V1...Vn) is generalized arc-consistent (GAC) for
domains D1...Dn iff for every variable Vi , for every value v i ∈ Di ,
there exist values
v1 ∈ D1, ..., v i−1 ∈ Di−1, v i+1 ∈ Di+1, ..., vn ∈ Dn such that
C(v1, ...vn).

A constraint C(V1...Vn) is bound-consistent (BC) for domains
D1...Dn iff the bounds of the domains are consistent (as defined
above).

17/54

Consistency on continuous domains

A constraint C on variables V1 . . .Vn, with domains D1 . . .Dn is
Hull consistent (HC) iff D1 × · · · × Dn is the smallest real box
with floating point bounds, including solutions C, in
D1 × · · · × Dn.

Remark: there are plenty of other consistencies (discrete:
path-consistency, singleton arc-consistency, strong consistencies... /
continuous: Box consistency, MOHCC...)

18/54

Examples

I X = Y + 3 ∗ Z
if X = 10,Y = 4 then Z = −2,

I X = Y + 3 ∗ Z
if DZ = {1..5} and DX = {0..10} then DY can be intersected with
{−5,7},

I alldifferent(X1,X2,X3)
if we know that D1 and D2 are {1,2}, the values 1 and 2 can be
removed from D3.

I cycle constraint in a graph :

18/54

Examples

I X = Y + 3 ∗ Z
if X = 10,Y = 4 then Z = −2,

I X = Y + 3 ∗ Z
if DZ = {1..5} and DX = {0..10} then DY can be intersected with
{−5,7},

I alldifferent(X1,X2,X3)
if we know that D1 and D2 are {1,2}, the values 1 and 2 can be
removed from D3.

I cycle constraint in a graph :

18/54

Examples

I X = Y + 3 ∗ Z
if X = 10,Y = 4 then Z = −2,

I X = Y + 3 ∗ Z
if DZ = {1..5} and DX = {0..10} then DY can be intersected with
{−5,7},

I alldifferent(X1,X2,X3)
if we know that D1 and D2 are {1,2}, the values 1 and 2 can be
removed from D3.

I cycle constraint in a graph :

18/54

Examples

I X = Y + 3 ∗ Z
if X = 10,Y = 4 then Z = −2,

I X = Y + 3 ∗ Z
if DZ = {1..5} and DX = {0..10} then DY can be intersected with
{−5,7},

I alldifferent(X1,X2,X3)
if we know that D1 and D2 are {1,2}, the values 1 and 2 can be
removed from D3.

I cycle constraint in a graph :

19/54

Propagation

Propagating a constraint C on domains D1...Dn is removing
from D1...Dn all the inconsistent values for C.

For a conjunction of constraints, for each constraint the
propagators are applied until a fixpoint is reached
[Benhamou, 1996, Apt, 1999].

20/54

Propagation

All in all, a propagation loop mixes:
I generic propagators for atomic constraints,
I specific propagators for global constraints,
I generic methods (often event-based) to wake the

propagators and efficiently combine them.

Designing an efficient propagation loop (fixpoint acceleration) is
still a challenge [Schulte and Tack, 2001].

21/54

Solving ?

Consistency is not enough, in general, for computing a solution
(all solutions).

Complete solving methods
Two phases are iterated

I propagation of the contraints (deductions),
I splits / instantiations : assertions on the domains, which

may be invalidated later (backtrack).

22/54

Continuous Solving Method

Parameter: float r

list of boxes sols ← ∅
queue of boxes toExplore ← ∅
box e

e ← D
push e in toExplore

while toExplore 6= ∅ do
e ← pop(toExplore)
e ← Hull-Consistency(e)
if e 6= ∅ then

if maxDim(e)≤ r or isSol(e)
then

sols ← sols ∪ e
else

split e in two boxes e1 and
e2
push e1 and e2 in toExplore

v1

v2

22/54

Continuous Solving Method

Parameter: float r

list of boxes sols ← ∅
queue of boxes toExplore ← ∅
box e

e ← D
push e in toExplore

while toExplore 6= ∅ do
e ← pop(toExplore)
e ← Hull-Consistency(e)

if e 6= ∅ then
if maxDim(e)≤ r or isSol(e)
then

sols ← sols ∪ e
else

split e in two boxes e1 and
e2
push e1 and e2 in toExplore

v1

v2

22/54

Continuous Solving Method

Parameter: float r

list of boxes sols ← ∅
queue of boxes toExplore ← ∅
box e

e ← D
push e in toExplore

while toExplore 6= ∅ do
e ← pop(toExplore)
e ← Hull-Consistency(e)
if e 6= ∅ then

if maxDim(e)≤ r or isSol(e)
then

sols ← sols ∪ e
else

split e in two boxes e1 and
e2
push e1 and e2 in toExplore

v1

v2

22/54

Continuous Solving Method

Parameter: float r

list of boxes sols ← ∅
queue of boxes toExplore ← ∅
box e

e ← D
push e in toExplore

while toExplore 6= ∅ do
e ← pop(toExplore)
e ← Hull-Consistency(e)
if e 6= ∅ then

if maxDim(e)≤ r or isSol(e)
then

sols ← sols ∪ e
else

split e in two boxes e1 and e2
push e1 and e2 in toExplore

v1

v2

22/54

Continuous Solving Method

Parameter: float r

list of boxes sols ← ∅
queue of boxes toExplore ← ∅
box e

e ← D
push e in toExplore

while toExplore 6= ∅ do
e ← pop(toExplore)
e ← Hull-Consistency(e)

if e 6= ∅ then
if maxDim(e)≤ r or isSol(e)
then

sols ← sols ∪ e
else

split e in two boxes e1 and
e2
push e1 and e2 in toExplore

v1

v2

22/54

Continuous Solving Method

Parameter: float r

list of boxes sols ← ∅
queue of boxes toExplore ← ∅
box e

e ← D
push e in toExplore

while toExplore 6= ∅ do
e ← pop(toExplore)
e ← Hull-Consistency(e)
if e 6= ∅ then

if maxDim(e)≤ r or isSol(e)
then

sols ← sols ∪ e
else

split e in two boxes e1 and
e2
push e1 and e2 in toExplore

v1

v2

23/54

Heuristics

I dom: smallest domain first,
I deg, wdeg: most constrained variable first (possibly with

weights),
I dom/wdeg: the previous ones combined,
I activity: dynamically adapts to the efficiency of the

constraints,
I counting-based search: uses estimations (or ub) of the

number of solutions for the global constraints (cardinality),
I on continuous domains, largest dimension first,
I ad hoc heuristics.

There is no such thing as a Free Lunch.

24/54

Some active solvers

I Choco: java library, free
http://www.emn.fr/z-info/choco-solver/

I gecode: C++ library, free
-http://www.gecode.org/

I ORTools: C++, interface in Python, free,
https://code.google.com/p/or-tools/

I Oscar: Scala, free,
https:
//bitbucket.org/oscarlib/oscar/wiki/Home

I Prolog family: ECLiPSe, Sicstus
I AbSolute, OCaml, free,
I plenty of others!

http://www.emn.fr/z-info/choco-solver/
- http://www.gecode.org/
https://code.google.com/p/or-tools/
https://bitbucket.org/oscarlib/oscar/wiki/Home
https://bitbucket.org/oscarlib/oscar/wiki/Home

25/54

Disambiguation

CP SAT/SMT
Vars int or real or symb bool+MT
Const various clauses+MT
Solv backtrack DPLL
Propag ad hoc unit
Learning nogoods clause learning
Implem support (AC6+) watched literals

CP is good at: global reasoning on combinatorial problems,
modeling tools, dirty problems.
CP is bad at: mixing variables of different types, learning.

26/54

Outline

Introduction to CP

Complete solving

Abstract solving
Abstract Domains for CP
Octagons
Combining abstract domains

27/54

Consistency

Hull-consistency Bound-consistency Generalized
arc-consistency

Two key remarks

I consistency is not about where the solutions are, it is about
where they are not,

I why square?

28/54

Abstract Interpretation

I Abstract Interpretation (AbsInt) is a theory of approximation
of program semantics [Cousot and Cousot, 1976]

I Applied to static analysis and verification of software

I Goal: automatically prove that a program does not have
execution errors

I Key idea: abstract the valuations of the programs variables

29/54

Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1

x

y

Forbidden Zone

29/54

Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1

x

y

Concrete domain D[

29/54

Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1 x

y

Boxes

29/54

Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1

x

y

Better boxes

29/54

Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1

x

y

Octagons

29/54

Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1

x

y

Convex polyhedra

30/54

AI ? CP ?

AI in a nutshell
We may not know where a program is going. But it is fine, as
long as we know where the program is not going.

CP in a nutshell
We make huge efforts to compute where solutions cannot be.

30/54

AI ? CP ?

AI in a nutshell
We may not know where a program is going. But it is fine, as
long as we know where the program is not going.

CP in a nutshell
We make huge efforts to compute where solutions cannot be.

31/54

Links

CP ∩ AI
Approximations of some spaces which are undecidable, or
difficult to compute:

I solution space in CP,
I traces in AI.

AI\CP

I many abstract domains,
I reduced products (combining abstract domains).

CP\AI

I heuristics,
I precision.

32/54

Abstract Solving Method

Central question
Given a CSP, is it possible to write a program such that a static
analysis of this program gives the solutions of the CSP?

We define the resolution as a concrete semantics.

33/54

What already exist in AI

Intervals Zonotopes Octagons Polyhedron

Abstract domains come with:
I transfer functions ρ] (assignment, test, . . .)
I meet ∩] and join ∪]

I widening O] and narrowing M]

We need:
I a consistency/propagation ρ
I a splitting operator ⊕
I a size function τ

33/54

What already exist in AI

Intervals Zonotopes Octagons Polyhedron

Abstract domains come with:
I transfer functions ρ] (assignment, test, . . .)
I meet ∩] and join ∪]

I widening O] and narrowing M]

We need:
I a consistency/propagation ρ
I a splitting operator ⊕
I a size function τ

34/54

Abstract Solving Method

Propagation

I Constraint propagators are test transfer functions
Hull consistency algorithm HC4 is exactly the same algorithm as
Bottom-Up Top-Down in Abstract Interpretation
[Cousot and Cousot, 1977]

I Propagation loop, fixpoint using local iterations
[Granger, 1992]

Exploration

I Splitting operator in disjunctive completion: must be added
I Size function: must be added

35/54

Continuous Solving Method

Parameter: float r

list of boxes sols ← ∅
queue of boxes toExplore ← ∅
box e ← D

push e in toExplore

while toExplore 6= ∅ do
e← pop(toExplore)
e← propagate(e)
if e 6= ∅ then

if maxDim(e) ≤ r or isSol(e) then
sols ← sols ∪ e

else
split e in two boxes e1 and e2
push e1 and e2 in toExplore

Under some conditions on the operators, this abstract solving
method terminates, is correct and/or complete.

35/54

Abstract Solving Method

Parameter: float r

list of boxes disjunction sols ← ∅
queue of boxes disjunction toExplore ← ∅
box abstract element e ← D >]

push e in toExplore

while toExplore 6= ∅ do
e← pop(toExplore)
e← propagate(e) ρ](e)
if e 6= ∅ then

if maxDim(e) τ(e) ≤ r or isSol(e) then
sols ← sols ∪ e

else
split e in two boxes e1 and e2
push e1 and e2 ⊕(e) in toExplore

Under some conditions on the operators, this abstract solving
method terminates, is correct and/or complete.

35/54

AbSolute

AbSolute is a solver:
I in OCaml
I based on the Apron library for numeric abstract domains

[Jeannet and Miné, 2009],
I on abstract domains: boxes, octagons, polyhedra, BDDs

(currently developed) some reduced products, and many
others soon,

I with plenty of fun features: visualization, tikz generation...

https://github.com/mpelleau/AbSolute
Now in opam!

https://github.com/mpelleau/AbSolute

34/54

Solver architecture

Everything is made on abstract domains.

Abstract domain

type domain

va l init : prob −> domain
va l propagate : domain −> constraints −>

domain
va l split : domain −> domain list
va l size : domain −> bool

35/54

Outline

Introduction to CP

Complete solving

Abstract solving
Abstract Domains for CP
Octagons
Combining abstract domains

36/54

Octagons

Definition (Octagon [Miné, 2006])
Set of points satisfying a conjunction of constraints of the form
±vi ± vj ≤ c, called octagonal constraints

v1

v2

v1 ≥ 1

v1 ≤ 5v2 ≥ 1

v2 ≤ 5

v2 − v1 ≤ 2

v1 − v2 ≤ 2.5

v1 + v2 ≥ 3
I In dimension n, an octagon

has at most 2n2 faces
I An octagon can be

unbounded

37/54

Octagons

Compact representation: smallest Difference Bound Matrix
(DBM)

v1

v2

−v1 ≤ −1

v1 ≤ 5
−v2 ≤ −1

v2 ≤ 5

v2 − v1 ≤ 2

v1 − v2 ≤ 2.5

−v1 − v2 ≤ −3 
0 −2 2 −3

10 0 +∞ 2.5
2.5 −3 0 −2
+∞ 2 10 0


v1 −v1 v2 −v2

v1

−v1

v2

−v2

I provides a normal form (smallest DBM),
I efficient propagation with Floyd-Warshall shortest path

algorithm [Miné, 2006].

37/54

Octagons

Compact representation: smallest Difference Bound Matrix
(DBM)

v1

v2

−v1 ≤ −1

v1 ≤ 5
−v2 ≤ −1

v2 ≤ 5

v2 − v1 ≤ 2

v1 − v2 ≤ 2.5

−v1 − v2 ≤ −3 
0 −2 2 −3

10 0 10 2.5
2.5 −3 0 −2
10 2 10 0


v1 −v1 v2 −v2

v1

−v1

v2

−v2

I provides a normal form (smallest DBM),
I efficient propagation with Floyd-Warshall shortest path

algorithm [Miné, 2006].

38/54

Octagons for CP

x

y
x ≥ 1

x ≤ 5
y ≥ 1

y ≤ 5

y − x ≤ 2

x − y ≤ 2.5

x + y ≥ 3

x ′ = x cos
(
π
4

)
− y sin

(
π
4

)
y ′ = x sin

(
π
4

)
+ y cos

(
π
4

)

x

y x ′

y ′

38/54

Octagons for CP

x

y
x ≥ 1

x ≤ 5
y ≥ 1

y ≤ 5

y − x ≤ 2

x − y ≤ 2.5

x + y ≥ 3

x ′ = x cos
(
π
4

)
− y sin

(
π
4

)
y ′ = x sin

(
π
4

)
+ y cos

(
π
4

)

x

y x ′

y ′

39/54

Representation for CP

Representation in O(n2) for a CSP with n variables and p
constraints

I n2 variables
I p(n(n − 1) + 2)/2 constraints

Back to the boxes: the constraints can be propagated in all the
bases.

40/54

Octagonal Hull Consistency

Interleave the FW algorithm,
and Hull-Consistency for each
box:
each time a new bound is found
by FW, it is replaced by the
minimum of the bounds.

HC4

HC4

41/54

Octagonal Split

A splitting operator, splits a variable domain

v1

v2

v1

v2

v1

v2

42/54

Octagonal Heuristic

Take the "best" basis, the box with the minimum of the maximum
width
Split the largest domain in this basis, the domain with the
maximum width

42/54

Octagonal Heuristic

Take the "best" basis, the box with the minimum of the maximum
width
Split the largest domain in this basis, the domain with the
maximum width

43/54

Octagonal Solving

I We have:
I an octagonal consistency
I a splitting operator
I a choice heuristic
I a precision.

I We obtain an Octagonal Solver

44/54

Output

Same problem with the same time limit.

45/54

Experiments

Comparison of an ad-hoc implementation of the same solving
algorithm, with the octagon abstract domain or the intervals.

First solution All the solutions
name nbvar ctrs In Oct In Oct
h75 5 ≤ 41.40 0.03 - -
hs64 3 ≤ 0.01 0.05 - -
h84 5 ≤ 5.47 2.54 - 7238.74

KinematicPair 2 ≤ 0.00 0.00 53.09 16.56
pramanik 3 = 28.84 0.16 193.14 543.46

trigo1 10 = 18.93 1.38 20.27 28.84
brent-10 10 = 6.96 0.54 17.72 105.02

h74 5 = ≤ 305.98 13.70 1 304.23 566.31
fredtest 6 = ≤ 3 146.44 19.33 - -

Solver: Ibex [Chabert and Jaulin, 2009].
Problems from the COCONUT benchmark.
CPU time in seconds, TO 3 hours.

46/54

Outline

Introduction to CP

Complete solving

Abstract solving
Abstract Domains for CP
Octagons
Combining abstract domains

47/54

Reduced Products

A Reduced Product combines two (or more) abstract domains,
with reduction operators to transfer information from one to the
other [Cousot and Cousot, 1979].

(a) Polyhedra (b) Boxes (c) Reduced Product

48/54

Promising Reduced Products

I Box-Polyedra: mixes CP and Operation Research
techniques (linear programming & integer linear
programming),
implemented by Ghiles Ziat,

I Integer-Real Boxes: solves problem with both continuous
and discrete variables.
current work: a clever reduced product heuristic, Ghiles
Ziat

I Boxes-Integer octagons, with reified constraints: other
ways for the domains to communicate
current work: new ways of learning constraints, Pierre
Talbot

49/54

Polyedra abstract domain P]

We use the already existing Polyedra Abstract Domain in
double representation (constraints and generators).

τp(X]) = max
vfill∈X]

||gi − gj ||

⊕p(X]) =

{
X] ∪

{∑
i

βivi ≤ h

}
,X] ∪

{∑
i

βivi ≥ h

}}

50/54

Box Polyedra Reduced Product

x , y ∈ [−5,5]

y ≤ 2x + 10
2y ≥ x − 8

x2 + y2 ≥ 3

(e) Consistent
polyhedron

(f) Solving the
non-linear part

(g) Intersection
of the domains

51/54

Box Polyedra Reduced Product

problem #var #ctrs time, AbS time, Ibex #sols AbS #sols, Ibex
booth 2 2 3.026s 26.36s 19183 1143554

exnewton 2 3 0.158s 26.452s 14415 1021152
supersim 2 3 0.7s 0.008s 1 1
aljazzaf 3 2 0.008s 0.02s 42 43

bronstein 3 3 0.01s 0.004s 8 4
eqlin 3 3 0.07s 0.008s 1 1
cubic 2 2 0.007s 0.009 9 3
hs23 2 6 2.667s 2.608s 27268 74678

powell 4 4 0.007s 0.02 4 1
combustion 10 10 0.007s 0.012s 1 1

52/54

Other works

current Solution counting for global constraints (PhD Giovanni Lo
Bianco)

future Solution counting in Abstract Domains, solvers which
enumerate solutions in a random order

current Application to flow-chemistry (post-doc Daniel Cortes
Borda)

future Application to mixed problems

53/54

Conclusion

What we (CP) gain:
I new, relational abstract domains: octagons, polyedra,

BDDs...
I reduced products to combine domains in a sound way:

Boxes+Polyedra, Real+Int boxes,
I new heuristics inspired from AI: elimination.

What AI gains:
I new operators on abstract domains to use on other

verification problems: split for computing inductive
invariants,

I new tools on the abstract domains which can be defined as
constraints: size, enumeration of feasible points...

54/54

Further Research

Develop AbSolute
I improve the integer domain, add solution counting,
I generalize the reduced products mechanism (constraint

allocation),

Is CP a decision procedure? Investigate the links with SMT:
I use SMT learning with abstract domains (comparable to

ACDCL),
I compare the landscape analysis/heuristics to build efficient

combined models,
I define CP as an MT, to retrieve the logic part of CP: back

to constraint logic programming!

54/54

Apt, K. R. (1999).
The essence of constraint propagation.
Theoretical Computer Science, 221.

Benhamou, F. (1996).
Heterogeneous constraint solvings.
In Proceedings of the 5th International Conference on
Algebraic and Logic Programming, pages 62–76.

Chabert, G. and Jaulin, L. (2009).
Contractor programming.
Artificial Intelligence, 173:1079–1100.

Cousot, P. and Cousot, R. (1976).
Static determination of dynamic properties of programs.
In Proceedings of the 2nd International Symposium on
Programming, pages 106–130.

Cousot, P. and Cousot, R. (1977).
Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of
fixpoints.
In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252.

Cousot, P. and Cousot, R. (1979).
Systematic design of program analysis frameworks.
In Proceedings of the 6th ACM SIGACT-SIGPLAN
symposium of Principles of Programming Languages,
pages 269–282.

Granger, P. (1992).
Improving the results of static analyses of programs by
local decreasing iterations.
In Proceedings of the 12th Conference on Foundations of
Software Technology and Theoretical Computer Science.

Jeannet, B. and Miné, A. (2009).
Apron: A library of numerical abstract domains for static
analysis.
In Proceedings of the 21th International Conference
Computer Aided Verification (CAV 2009).

Miné, A. (2006).
The octagon abstract domain.
Higher-Order and Symbolic Computation, 19(1):31–100.

Schulte, C. and Tack, G. (2001).
Implementing efficient propagation control.
In Proceedings of the 3rd workshop on Techniques for
Implementing Constraint Programming Systems.

	Introduction to CP
	Complete solving
	Consistency
	Backtrack search

	Abstract solving
	Abstract Domains for CP
	Octagons
	Combining abstract domains

