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1 SAT/SMT Solvers
A. Combining Theories

A typical SMT solver has several back-ends (one for each supported theory) as well as an underlying SAT
solver to handle the Boolean structure of the problem to solve. The solver relies crucially on combining
theories, that is the ability to propagate learned results from one back-end to another to either prove falsity
or �nd a model.

1. Cite one generic method that allows combining several theories. What restriction does it have?

2. Cite other generic means to combine theories that overcome such restriction? (hint: remember the
seminar!)

Consider the formula: ϕ := x2+y2 ≤ 1∧2x+2y ≥ 3, and suppose you only have the polyheral abstract
domain (the theory of linear inequalities) at your disposal.

3. How would you proceed to prove that ϕ is UNSAT over the reals? (hint: think of an appropriate
logical cut.)

3′. What open goal you will still have to discharge?

4. Is it always possible to �nd such cuts? Can you slightly edit ϕ to make it a counter-example?

B. Bonus

The satis�ability of the formula ϕ, and in general any logical combination of polynomial equations and
inequalities, is decidable. Indeed, ϕ is SAT if and only if the sentence ∃x.∃y. ϕ is true.

5. Perform the Cylindrical Algebraic Decomposition (CAD) of ϕ and prove it is UNSAT.

6. What are the advantages of combining linear theories (using eventually over-approximations for
non-linear expressions) compared to CAD? Explain.

Answer.

1. The Nelson-Oppen method [Nelson and Oppen, 1979] combines decision procedures of indi-
vidual theories to construct a decision procedure for a combination of theories. The most fun-
damental restriction being that the combined theories have to be essentially disjoint sharing
information solely with the equality symbol, the only allowed common symbol.

2. During the seminar, we saw how the abstract interpretation framework is used to share a richer
set of information beyond equality via using several di�erent (numerical) abstract domains.

3. x2 + y2 ≤ 1 implies x ≤ 1 ∧ y ≤ 1 implies x+ y < 3
2 .

3′. Showing that the disk is included in x ≤ 1 ∧ y ≤ 1 is beyond the capabilities of the polyhedral
abstract domain as it requires handling a non-linear inequality, namely x2 + y2 ≤ 1.

4. One can move the slope arbitrarily close to the circle making the previous cut non-su�cient to
separate the disk for the half-space. One can also construct examples beyond the expressiveness
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of the underlying domains requiring to either increase the expressiveness of the domain or to
lose termination (when a cut exists at in�nity). For instance consider

ϕ′ := x2 + y2 ≤ 1 ∧ x2 + y >
5

4
.

A line that separates the hyperbola from the circle cannot be below the tangent to the circle at
that point. But then since the parabola touches the circle at the same point, the line intersects
with the hyperbola preventing separation (see Figure 1).

5. For the disk, the CAD is as follows:

(x = −1 ∧ y = 0) ∨
(
−1 < x < 1 ∧ −

√
1− x2 ≤ y ≤

√
1− x2

)
∨ (x = 1 ∧ y = 0)

For the half-space x+ y ≥ 3
2 , there is only one cell, namely

y ≥ 1

2
(3− 2x)

The intersection of this one cell with the decomposition of the disk leads to False: no intersection
is possible.

6. The number of cells grows exponentially in CAD. There is therefore a trade-o� between de-
cidability and e�ciency. Over-approximations are much more e�cient in practice, but any
procedure using over-approximation is necessarily non-complete.
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Figure 1: Plot of the formula ϕ′.

2 Convex Optimization
Dantzig’s Lexicographic Rule

The simplex algorithm iterates over the bases while decreasing the reduced cost.

1. Explain why the termination is ensured when the decrease is strict at each iteration.

The decrease can however be non-strict leading to degenerate cases for which termination is no longer
guaranteed. For instance, consider the following pyramid:

P := {(x, y, z) ∈ R3 | y + z ≤ 1 ∧ z − y ≤ 1 ∧ x+ z ≤ 1 ∧ z − x ≤ 1 ∧ z ≥ 0},

and the following optimization problem (see Figure 2)

min x− y − 3z

s.t. (x, y, z) ∈ P

The point s := (0, 0, 1) is a (geometric) vertex that corresponds to the top of the pyramid.

2. Rewrite the problem to apply the simplex algorithm.

3. Perform one step of the algorithm assuming the initial point is s (you can use the tableau presenta-
tion). What decision the algorithm could make, why?
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In general, consider the linear optimization problem (A ∈ Rm×n):

min c · x
s.t. Ax ≥ b (P)

and its perturbed version:

min c · x
s.t. Ax ≥ b̃ where b̃i = bi − εi

for some positive ε� 1.

4. Does the perturbed problem have degenerate bases? Explain why.

4′. Give the geometric intuition for the pyramid P .

Dantzig’s idea is to encode a real number r as a polynomial in ε of degree at most m:

r + r1ε+ r2ε
2 + · · ·+ rmε

m,

represented as a row: (r, r1, . . . , rm). The usual order over the reals is replaced by the following lexico-
graphic order 1

(r, r1, . . . , rm) ≥lex (s, s1, . . . , sm) ⇐⇒ r+r1ε+ · · ·+rmεm ≥ s+s1ε+ · · ·+smεm, ∀ε. 0 < ε� 1

Now the feasible set {x ∈ Rn | Ax ≥ b̃} can be encoded as:{
y ∈ Rn×(1+m) | Ay ≥lex

(
b −Im

)}
,

where ≥lex over Rm×(1+m) is interpreted row by row.

Consider the following optimization problem (y ∈ Rn×(1+m)):

min
(
c 0

)
· y

s.t. Ay ≥lex

(
b −Im

)
(P̃)

5. De�ne the bases (algebraic vertices) for (P̃). We will call them lex-bases.

6. Prove that lex-bases of (P̃) form a subset of the bases of (P). (Observe that the matrix A is left
unchanged in (P̃).)

Answer.

1. The number of (geometric) vertices de�ning the feasible set is �nite. If the decrease is strict
at each vertex (ρ > 0) the termination is guaranteed: either the minimum is �nite and there-
fore will be necessarily reached or the problem is unbounded (which will be detected via the
unboundedness criteria).

2. The feasible set can be rewritten as As = b for some matrix A, vector b and s ∈ R9
+. First, we

encode the original variables x, y and z as follows: x := s1 − s2, y := s3 − s4, and z = s5 to
get

x ∈ P ⇐⇒


0 0 1 −1 1
0 0 −1 1 1
1 −1 0 0 1
−1 1 0 0 1



s1
s2
s3
s4
s5

 ≤

1
1
1
1

 = b ∧ si ≥ 0

We then add 4 extra (slack) variables (s6, . . . , s9) to saturate the inequalities. The matrix A is
the concatenation of the above matrix and the identity matrix of dimension 4.

3. Suppose the algorithm starts with B = {5, 7, 8, 9} and N = {1, 2, 3, 4, 6}. This is one possible
choice that corresponds to the top of the pyramid with AB of rank 4 = m. The reduced cost
is (1,−1, 2,−2, 3)t. Two coordinates are negative. If one moves with respect to (0, 1, 0, 0, 0)t,
the fourth component of δB is negative. If the algorithm doesn’t check for the actual value of
the decrease ρ (which is zero here), it will update the base to {2, 5, 7, 8} (switching 2 and 9).

1Check quickly that it is actually an order!
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Likewise, if one moves with respect to (0, 0, 0, 1, 0)t, the decrease is not strict and the base will
be updated by removing one of the indices 7, 8 or 9 from B and adding the index 4 instead.

4. Degenerated cases occur when the rank ofAB is (strictly) less thanm the number of inequalities
de�ning the feasible set. When this happens for the perturbed problem, it means that there exist
some λi, not all zero, such that ∑

i

λi(bi − εi) = 0

but then if this equation holds for in�nitely many small positive ε, then λi = 0 for all i (a
univariate polynomial over the reals has �nitely many roots) contradicting the assumption:
there must exists a positive small epsilon for which there are no degenerate cases.

• Consider the following sets of equations corresponding to the bases, {1, 5, 9} and {2, 5, 9} re-
spectively: 

0 1 0
0 1 0
1 1 0
−1 1 1


s1s5
s9

 =


1
1
1
1




0 1 0
0 1 0
−1 1 0
1 1 1


s2s5
s9

 =


1
1
1
1


In both cases the rank of the matrices is 3 < 4(= m) (an obvious redundant rows is highlighted
in red), and the solutions for the base elements are s1 = s2 = s9 = 0 and s5 = 1. Both
correspond to (x, y, z) = (0, 0, 1), the top of the pyramid. The geometric intuition is that the
top of the pyramid is ‘cut’ in the perturbed problem: each base corresponds now to a di�erent
vertex and AB has to be of rank m.

5. A base is, as we have seen, a set of indices such that the sub-matrixAB of
(
A Im

)
has rankm

(the number of rows of A). The concatenation of Im to A is meant to saturate the inequalities
≥lex by adding m rows to the matrix y. We will denote the resulted matrix as y′.

6. Suppose that B is a base for (P̃) then

yB = A−1B

(
b −Im

)
=
(
A−1B b −A−1B

)
In particular, the �rst column of yB is equal to A−1B b and de�nes a geometric vertex (if A−1B b is
an element of the non-negative orthant).

Essentially, Dantzig’s idea to avoid cycling is to ‘tag’ (or label) all bases (using the perturbation) that
have the same geometric vertex. By enumerating the lex-bases, we cover all the bases of the original
problem without cycling.

Figure 2: Pyramid P together with the hyperplane de�ning the objective function at the extreme point.
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