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1 SAT/SMT Solvers

A. CNF vs DNF
We have seen that converting any boolean (well formed) formula to an equivalent conjunctive normal
form (CNF) increases linearly the number of logical connectives using Tseytin transformations.

1. Is this possible for disjunctive normal forms (DNF)?

2. Explain the reason for this asymmetry.

Answer. (Easy)

For tautological equivalence, we have seen that the number of logical connectives grows in general
exponentially when transforming a formula into both a CNF or a DNF. The canonical examples being
the “product of sums” for DNF and the “sum of products” for CNF (cf. lecture 1, slide 17 for CNF). For
instance, the following w� in CNF

ψ = (x1 ∨ y1) ∧ · · · ∧ (xn ∨ yn),

has 2n variables, n (∨) connectives, and n − 1 (∧). Its DNF has 2n clauses, each of which with n
literals. Observe here the parallel with distributing the polynomial Πn

i=1(xi + yi). The result, seen
as a “sum of products” has 2n monomials each of which has degree n.

So as far as logical equivalence is concerned, the size of both normal formalea can grow exponentially.
However, we observed that we can weaken the notion of tautological equivalence and consider in-
stead equisatis�ability for which any w� can be put in CNF with a linear growth in size using Tseytin
transformation. The main trick for those transformations is the use of extra variables to label disjunc-
tions and then append the de�nition of those extra variables by means of equivalences (which are
themselves CNF) thereby controlling the size of the equi-sat formula. Converting a w� in an equi-sat
DNF using the same tricks su�ers the same exponential growth as one ends up appending a formula
like ψ above to the original w�.

B. Resolution Rule
The resolution rule allows to eliminate via equivalent satis�ability a variable that appears both positively
and negatively in di�erent clauses. Assuming in�nite memory, if one is to apply the original Davis/Putnam
(DP) method to a given CNF formula till saturation (that is till reaching a �xed point).

1. What are the possible results of the algorithm and why?

2. If the formula is UNSAT, how can we extract a certi�cate of unsatis�ability?

3. How does such certi�cate relate to Craig interpolants?

Answer. (Di�cult)

1. A �xed point is reached whenever no variable appears both negatively and positively in two
distinct clauses. This in particular means that a �xed point has two forms. The �rst is a unique
clause (a disjunction of literals), encoding all possible solutions of the original problem. The
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second is the empty set, proving that the formula is unsatis�able.

2. Although possibly suboptimal (in the sense of too detailed/re�ned), the tree of the successive
resolutions (together with the unit and forward propagations) is an unsat certi�cate as it gives
an UNSAT equi-sat formula of the original problem.

3. Firstly, Craig’s interpolants serve the same purpose, that is they provide an UNSAT certi�cate.
Secondly, they can be extracted from the certi�cate one extracts by solely relying on the reso-
lution rule by clustering together several small steps (which is a form of abstraction). For this
reason, such interpolants are not canonical nor unique in general. Lastly, although CDCL re-
introduces the use of the resolution rule via the learning clauses, one almost never have access
to the re�ned certi�cate obtained by the sole use of the resolution rule: Craig’s interpolants give
almost always a sound abstraction of such certi�cates.

C. CDCL
Con�ict-Driven Clause Learning (CDCL) allows to prune the search tree built by adding new clauses
(tautologically) implied by the original formula. Consider the following CNF formula

φ = c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6
= (x5 ∨ x6) ∧ (x1 ∨ x8 ∨ ¬x2) ∧ (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x4 ∨ ¬x5) ∧ (x9 ∨ ¬x4 ∨ ¬x6)

Assume the following decision assignments have been already made x9 = 0@2 and x8 = 0@3 and that
the current decision assignment is x1 = 0@5 (where the notation x = b@n means that the variable x is
assigned the value b at depth n).

1. Build the resulting implication graph.

2. Suggest a clause to learn from the observed con�ict.

3. Prove that augmenting φ with such a formula is SAT equivalent to the original problem φ.

4. Based on the learned clause, at what depth would you backtrack?

Answer. (Easy)

We can learn several clauses that lead to the con�ict on x5. Graphically, if we cut the graph in a
way that isolates the sources (the previous decisions) from the con�ict, then the negation of the
conjunctions of the assigned variables that lead to the con�ict is the learned clause.

If one is to cut right before the con�ict, the learned clause would be c1, which is trivially implied by
φ. On the other hand, if we cut right after the sources, the learned clause would involve all decision
variables, namely cl1 := x1 ∨ x8 ∨ x9. Indeed, the implication graph tells us that φ∧¬cl1 is UNSAT
because if cl1 satis�ed then φ reduces to false by unit propagation. Thus φ |= cl1 (tautological
implications can be formulated as (un)satis�ability problems). So cl1, as a logical implication of φ,
can be safely added to φ and the SAT-equivalence of φ and φ∧ cl1 becomes trivial. There are several
other clauses one could also learn. For instance cl2 := ¬x4 ∨ x6, since appending its negation to φ
leads to a con�ict (using the clauses c1 and c5). Other clauses that could be learned from the same
implication graph are cl3 := ¬x4 ∨ x9 and cl4 := x2 ∨ x3 ∨ x9.

The interest of making explicit the implied clauses stems from their ability to avoid reaching the same
con�ict (on x5 in our case). For instance, by adding cl3, we prevent setting x4 = 1 given the previous
decision x9 = 0 because we know that would lead to the same con�ict on x5. So by adding such
clause to the original problem, with respect to the same decision for x9, x4 will be forced to 0.

There is non canonical choice for the backtracking depth. It is a heuristic of the solvers. Ideally one
would want to backtrack to a decision that immediately exploits the learned clause to immediately
�x an additional variable. In our example, by learning cl3 and backtracking to depth 2, x4 will be set
to 0 by unit propagation. In fact, the choice of cl3 and depth 2 correspond to the �rst Unit Implication
Point strategy used in Cha� for instance.

D. SAT Reduction
The multiprocessing scheduling problem asks the following question. Given a �nite set A of tasks, a
measure (or time length) `(a) : A 7→ N for each task a ∈ A, a number m of processors and a deadline
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D ∈ N, is there a partition A = A1 ∪A2 ∪ · · · ∪Am of A into m disjoint sets such that

max
1≤i≤m

{∑
a∈Ai

`(a)

}
≤ D ?

Prove that the multiprocessing scheduling problem is NP-complete.

Answer. (Easy/Moderate)

The problem is in NP since, given a partition, one can check the inequality by computing the max over
i. To prove NP-completeness, we have to reduce a known NP-complete problem to the multiprocessing
scheduling problem, that is by encoding an instance of the known NP-complete problem as an instance of
this problem in polynomial time.

One way to go is to encode the partition problem, which is NP-complete, into the multiprocessing schedul-
ing problem. Given a �nite set A and a nonnegative measure s on A (that is to say a function s : A 7→ N),
the partition problem asks whether there exists a subset A′ of A such that∑

a∈A′

s(a) =
∑

a∈A\A′

s(a).

The partition problem is a particular instance of the multiprocessing scheduling problem with:

D =
1

2

∑
a∈A

s(a), m = 2, s = `.

If there exists a partition of A into A1 and A2 such that the inequality holds and suppose without loss of
generality that the total weight over A2 is greater than or equal the total weight over A1, that is∑

a∈A1

s(a) ≤
∑
a∈A2

s(a),

then
max
1≤i≤2

{∑
a∈Ai

s(a)

}
=
∑
a∈A2

s(a) ≤ D =
1

2

∑
a∈A

s(a) =
1

2

∑
a∈A1

s(a) +
1

2

∑
a∈A2

s(a)

which implies
1

2

∑
a∈A2

s(a) ≤ 1

2

∑
a∈A1

s(a)

Therefore ∑
a∈A1

s(a) =
∑
a∈A2

s(a) = D.

2 Convex Optimization

A. Linear Programming
The diet problem can be stated as follows: choose quantities x1, . . . , xn of n foods to �nd the cheapest
healthy diet such that (ı) one unit of food j costs cj and contains amount aij of nutrient i, and (ıı) a healthy
diet requires nutrient i in quantity at least bi.

1. Formulate the problem as a Linear Program (LP).

2. What is the interpretation (meaning) of the dual variables in this case? (write down the dual problem
and comment.).

Answer. (Moderate)

the cost of the diet is straightforward:
∑
j cjxj , or using the scalar product notation c · x. The

nutrient i is provided by the di�erent xj with aij , giving a total quantity of
∑n
j=1 aijxj . For the diet

to be healthy, such sum has to be at least equal to bi. Denoting by A the matrix having aij as its
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components, one obtains the feasible space Ax ≥ b, leading to the following LP:

min c · x (1)
s.t. Ax ≥ b (where x ≥ 0) (2)

The Lagrangian L(x, λ) = c · x− λ · (Ax− b), where the vector λ is nonnegative. Thus

sup
λ
L(x, λ) =

{
c · x if Ax ≥ b
+∞ otherwise

Therefore the objective value for our problem is reached by minimizing the above supremum. Recall
that the weak duality gives:

inf
x

sup
λ
L(x, λ) ≤ sup

λ
inf
x
L(x, λ)

and that we can rewrite the Lagrangian as follows L(x, λ) = b ·λ+x · (c−Atλ), which then lead to

inf
x
L(x, λ) =

{
b · λ if Atλ ≤ c
−∞ otherwise

and the following dual optimization problem

max b · λ (3)
s.t. Atλ ≤ c (where λ ≥ 0) (4)

The primal formalizes the problem by attempting to minimize the cost of the diet while maintaining a
minimal nutritive supply for it to be healthy. The dual problem formalizes it by maximizing the pro�t,
or in our context, the bene�ts of the di�erent nutriments of the diet, subject to a �xed unit cost.

Said di�erently, for a given task that you want to perform (for various reasons: bene�ts, pro�ts, etc.)
but that costs you (money, time, energy, etc.), either you minimize your total cost while ensuring that
your task is actually still performed, or you maximize your pro�t/bene�t from it while accounting
for the unavoidable unit costs for the job to be done. That’s in words the essence of duality.

B. Simplex vs interior point methods
We want to solve the following problem, where f is twice continuously di�erentiable and assuming the
primal objective value is �nite and attained:

min f(x)
s.t. Ax = b, (rankA = p)

1. Using the KKT conditions, deduce the optimality conditions on x? and ν? (the Lagrange multiplier
vector).

2. Suppose x̂ is a solution for Ax = b, eliminate the equality constraint from the above problem.

3. Let z? denote the optimal vector of this new unconstrained problem, deduce how x? and ν? from z?.

4. Suppose f is linear, explain brie�y the descent method used by the simplex algorithm with respect
to the unconstrained problem and contrast it with the descent methods used in the interior point
methods.

Answer. (Moderate)

1. In this case, the complementarity conditions do not play any role. Recall that the Lagrangian
for this problem is L(x, ν) = f(x) + ν · (Ax − b), where in this case ν is not constrained to the
nonnegative orthant. The KKT conditions translate to the following conditions on x? and ν?:

Ax? − b = 0 and (∇xL)(x?, ν?) = (∇f)(x?) +Atν? = 0

2. By selecting a basis for the matrix A and decomposing A and x accordingly, the condition Ax = b
translates to ABxB + ANxN = b or equivalently xB = A−1B (b − ANxN ). Thus, the objective
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function f can be rewritten as

f(x) = f((xB , xN )) = f((A−1B (b−ANxN ), xN ))

where only the (sub)vector xN acts as a variable. The condition Ax = b is enforced by linking xB
and xN , so that the optimization problem becomes unconstrained (for our choice of the basis B):

min
xN

f((A−1B (b−ANxN ), xN )), (xN ∈ R|N |).

3. If z? is the optimal value for xN , then x?B = A−1B (b − ANz?), and thus x? = (xB?, z
?). By (1.),

we deduce ν? from x?.

4. For a given basisB, the Simplex method computes z?, then deduces x? as explained above. When f
is linear the KKT condition for ν? (see 1.) gives c+Atν? = 0, which is potentially an overdetermined
system since p ≤ n and one has n equations for p unknowns (|ν| = p). This leads to(

AtB
AtN

)
ν? =

(
−cB
−cN

)
=⇒ AtN ((AtB)−1cB) = cN .

So the Simplex method will update iteratively over the vertices of the polyhedron (or likewise bases
of the matrix A) till �nding a basis that satis�es the above condition. It will do so by minimizing the
reduced cost.

In contrast, the interior point method will go attempt to reach the optimum basis by traveling through
the polyhedron (by traversing its interior). The di�erent updates will be guided by the gradient of
the objective function.

C. Duality for non convex problems
The two-way partitioning problem is stated as follows (x·y denotes the usual scalar product,W is a square
matrix):

min x ·Wx
s.t. x2i = 1, i = 1, . . . , n

1. Is this a convex problem (explain)?

2. Compute its Lagrangian and state its dual problem while classifying it (QP, LP, SDP, etc.).

3. Deduce a lower bound for the primal optimal value p?.

Answer. (Di�cult)

In this problem, the components of the vector x are not even continuous since each xi can be either
1 or −1. The feasible set is therefore not a convex set, it is not even continuous.

We can still compute the Lagrangian as usual L(x, λ) = x · Wx +
∑
λi(x

2
i − 1), where λi are

unconstrained. To obtain the dual problem, it su�ces to compute infx L(x, λ). First, observe that we
rewrite the Lagrangian as L(x, λ) = x · (W + Λ)x−

∑
i λi, where Λ is the diagonal matrix obtained

by stacking the λi on its diagonal. Thus

inf
x
L(x, λ) =

{
−
∑
i λi if W + Λ � 0

−∞ otherwise

The dual problem is therefore an SDP problem:

max −
∑
i

λi (5)

s.t. W + Λ � 0 (6)

A necessary and su�cient condition for the matrix W + Λ to be positive semide�nite is to have all
its eigenvalues to be nonnegative which can be achieved by �xing all λi to be equal to−νmin, where
νmin denotes the minimal eigenvalue of W (assuming all are reals). Thus, for any νi eigenvalue of
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W , νi − νmin is an eigenvalue of W + Λ = W − νminI since

det(W + Λ− (νi − νmin)I) = det(W − νminI − (νi − νmin)I) = det(W − νiI) = 0.

Therefore, νi − νmin ≥ 0 for all i, and W + Λ is positive semide�nite. Thus

nνmin ≤ d? ≤ p?,

where d? and p? denote respectively the dual and primal objective values. The lower bound nνmin
is non trivial lower bound for the primal non convex problem obtained by solving an SDP problem.

D. “Visualizing” symmetric positive semidefinite matrices
Recall that a symmetric matrix S is positive semide�nite if for all vectors z, the scalar product of z and Sz
is nonnegative.

1. De�ne the set on which vary the components of the matrix S as a quanti�er elimination problem.

2. Solve the problem for n = 1, n being the dimension of z. (the case n = 2 is depicted below)

Answer. (Easy - Bonus)

The positive semi de�niteness of the matrix S can be expressed as

∀z1, . . . , zn. z · Sz ≥ 0

By removing the quanti�ers (that is by projecting on the space de�ned by the components of the matrix S),
one obtains a condition on the components of S for the matrix to be positive semide�nite.

When n = 1, the matrix S is a scalar, s say., we therefore get

∀z. sz2 ≥ 0

which reduces to s ≥ 0.
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