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1 Combining Theories
A typical SMT solver has several back-ends (one for each supported theory) as well as an underlying SAT solver
to handle the Boolean structure of the problem to solve. The solver relies crucially on combining theories, that
is the ability to propagate learned results from one backend to another to either prove falsity or �nd a model.

1. Cite one generic method that allows combining several theories. What restriction does it have?

2. Cite other generic means to combine theories that overcome such restriction? (hint: remember the semi-
nar!)

Consider the formula: ϕ := x2 + y2 ≤ 1 ∧ 2x + 2y ≥ 3, and suppose you only have the polyheral abstract
domain (the theory of linear inequalities) at your disposal.

3. How would you proceed to prove that ϕ is UNSAT over the reals? (hint: think of an appropriate logical
cut.)

3.′ What open goal you will still have to discharge?

4. Is it always possible to �nd such cuts? Can you slightly edit ϕ to make it a counter-example?

Bonus .

The satis�ability of the formula ϕ, and in general any logical combination of polynomial equations and inequal-
ities, is decidable. Indeed, ϕ is SAT if and only if the sentence ∃x.∃y. ϕ is true.

5. Perform the Cylindrical Algebraic Decomposition (CAD) of ϕ and prove it is UNSAT.

6. What are the advantages of combining linear theories (using eventually over-approximations for non-
linear expressions) compared to CAD? Explain.

2 Dantzig’s Lexicographic Rule
The simplex algorithm iterates over the bases while decreasing the reduced cost.

1. Explain why the termination is ensured when the decrease is strict at each iteration.

The decrease can however be non-strict leading to degenerate cases for which termination is no longer guaran-
teed. For instance, consider the following pyramid:

P := {(x, y, z) ∈ R3 | y + z ≤ 1 ∧ z − y ≤ 1 ∧ x+ z ≤ 1 ∧ z − x ≤ 1 ∧ z ≥ 0},

and the following optimization problem (see Figure 1)

min x− y − 3z

s.t. (x, y, z) ∈ P

The point s := (0, 0, 1) is a (geometric) vertex that corresponds to the top of the pyramid.

2. Rewrite the problem to apply the simplex algorithm.

1



3. Perform one step of the algorithm assuming the initial point is s (you can use the tableau presentation).
What decision the algorithm could make, why?

In general, consider the linear optimization problem (A ∈ Rm×n):

min c · x
s.t. Ax ≥ b (P)

and its perturbed version:

min c · x
s.t. Ax ≥ b̃ where b̃i = bi − εi

for some positive ε� 1.

4. Does the perturbed problem have degenerate bases? Explain why.

4′. Give the geometric intuition for the pyramid P .

Dantzig’s idea is to encode a real number r as a polynomial in ε of degree at most m:

r + r1ε+ r2ε
2 + · · ·+ rmε

m,

represented as a row: (r, r1, . . . , rm). The usual order over the reals is replaced by the following lexicographic
order 1

(r, r1, . . . , rm) ≥lex (s, s1, . . . , sm) ⇐⇒ r + r1ε+ · · ·+ rmε
m ≥ s+ s1ε+ · · ·+ smε

m, ∀ε. 0 < ε� 1

Now the feasible set {x ∈ Rn | Ax ≥ b̃} can be encoded as:{
y ∈ Rn×(1+m) | Ay ≥lex

(
b −Im

)}
,

where ≥lex over Rm×(1+m) is interpreted row by row.

Consider the following optimization problem (y ∈ Rn×(1+m)):

min
(
c 0

)
· y

s.t. Ay ≥lex

(
b −Im

)
(P̃)

5. De�ne the bases (algebraic vertices) for (P̃). We will call them lex-bases.

6. Prove that lex-bases of (P̃) form a subset of the bases of (P). (Observe that the matrixA is left unchanged
in (P̃).)

Figure 1: Pyramid P together with the hyperplane de�ning the objective function at the extreme point.

1Check quickly that it is actually an order!
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