Projects SPA 2019

Khalil Ghorbal

If you still want to propose your preferred problem, please come forward. You still have till **Monday October 14th**.

Otherwise, by the same date, you have to pick up a problem from the list below. The list is extracted from the famous list by Garey and Johnson [1] which you can find almost entirely here https://en.wikipedia.org/wiki/List_of_NP-complete_problems.

Each problem is separated into an instance describing the given data and the question or problem of interest. Problems marked with (*) are not known to be NP-complete (and are therefore NP-hard). The last three problems are open in the sense they are not known to be NP-complete or in P (or neither).

Once a problem is selected, your task will be to

- Understand and document the problem (known and recent related results)
- Apply at least two out of three solvers we've seen during the course to solve generic instances. Your implementation should reasonably work at least for a class of small instances of the problem
- Report your findings and results in a paper that you will be submitting online

Clique Instance: a graph G = (V, E), a positive integer $K \leq |V|$. Problem: does G contain a clique of size K or more. i.e., a subset $V' \subseteq V$ with $|V'| \geq K$ such that every two vertices in V' are joined by an edge in E?

Directed Elimination Ordering Instance: directed graph G = (V, A), nonnegative integer K. Problem: is there an elimination ordering for G with fill-in K or less, i.e., a one-to-one function $f : V \to \{1, 2, ..., |V|\}$ such that there are at most K pairs of vertices $(u, v) \in V \times V \setminus A$ with the property that G contains a directed path from u to v that only passes through vertices w satisfying $f(w) < \min\{f(u), f(v)\}$?

Consecutive Ones Submatrix Instance: An $m \times n$ matrix A of 0's and 1's and a positive integer K. Problem: Is there an $m \times K$ submatrix B of A that has the *consecutive ones* property, i.e., such that the columns of B can be permuted so that in each row all the 1's occur consecutively?

Quadratic Programming (*) Instance: finite set X of pairs (\bar{x}, b) , where \bar{x} is an *m*-tuple of rational numbers and *b* is a rational number, two *m*-tuples \bar{c} and \bar{d} of rational numbers, and a rational number *B*. Problem: Is there an *m*-tuple \bar{y} of rational numbers such that $\bar{x} \cdot \bar{y} \leq b$ for all (\bar{x}, b) in X and such that $\sum_{i=1}^{m} (c_i y_i^2 + d_i y_i) \geq B$, where c_i, y_i , and d_i denote the *i*th components of \bar{c}, \bar{y} , and \bar{d} respectively?

Algebraic Equations Over \mathbb{F}_2 Instance: Polynomials P_i , $1 \le i \le m$, over $\mathbb{F}_2[X_1, \ldots, X_n]$. Problem: do all polynomials P_i have a common solution in \mathbb{F}_2 ?

Quantified Boolean Formulas (QBF) (*) Instance: set $X = \{x_1, \ldots, x_n\}$ of variables, well-formed quantified Boolean formula $F = (Q_1x_1) \cdots (Q_nx_n)E$, where E is a Boolean expression and each $Q_i \in \{\exists, \forall\}$. Problem: is F true?

Graph Isomorphism Instance: two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. Problem: are G_1 and G_2 isomorphic, i.e., is there a one-to-one onto function $f: V_1 \to V_2$ such that $\{u, v\} \in E_1$ if and only if $\{f(u), f(v)\} \in E_2$.

Graph Genus Instance: graph G = (V, E) and a non-negative integer K. Problem: Can G be embedded on a surface of genus K such that no two edges cross one another?

Linear Programming Instance: Integer-valued vectors \bar{v}_i , $1 \le i \le m$, $\bar{d} = (d_1, \ldots, d_n)$, and \bar{c} , and an integer b. Problem: is there a vector \vec{x} of rational numbers such that, for $1 \le i \le m$, $\bar{v}_i \cdot \bar{x} \le d_i$, and $\bar{c} \cdot \vec{x} \ge b$?

References

 D. S. Johnson M. R. Garey. Computers and Intractability: A Guide to the Theory of Np-Completeness. W H Freeman Worth Pub 3PL, 1979.