Simulating and Verifying Cyber-Physical Systems: Current Challenges and Novel Research Directions

Khalil Ghorbal

INRIA, France

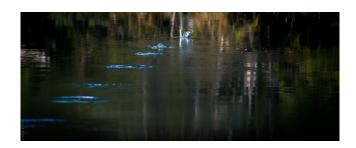
SCAV (CPSWeek)
Porto, Portugal
April 10th, 2018

Discrete Models

2 / 62

Continuous Models

Hybrid Models



Hybrid Models: Discrete ∪ Continuous

5 / 62

Computer Science (Automata Theory)

Essentially **discrete**: finite set of modes with continuous evolution within modes. [Hybrid Automata, Alur et al. 1992]

Control (Differential Equations)

Essentially **continuous**: non-smooth (discontinuous) dynamics, differential inclusions, Filippov/Utkin regularization. [Mosterman 1998, Sanfelice 2003]

Define/Describe Reactions to Events

Events

Model a simplified (often discrete) perception of the rich environment.

Reactions

Model how the system is supposed to react to an event so that it respects a set of constraints which are essentially physics laws and/or predefined requirements.

Convenient Model for a Large Class of Systems

Modeling is Instrumental to Master Complexity

Abstraction/Refinement Relationships

The molecular composition of the stratosphere has a minor impact on the Earth's orbit. Likewise, a galaxy is a dot in the Laniakea supercluster.

Compositionality and Reuse

Human beings are perhaps the most extreme example of both concepts: nature builds on top of what works to create new more complex structures.

Simulation (Time Travel)

A peek in the future (or the past) of a concrete model for a concrete initial (or final) condition. Essentially by "executing" the model step by step: only a **Local** recipe is needed.

Verification (Time Abstraction)

Qualitative analysis of the geometry (shape) of the state space as it captures **Global** properties.

Local description defines the global properties which in turn benefit numerical approximations (eg. Geometrical Integration)

Outline

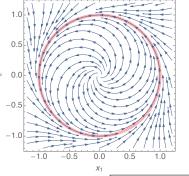
- 1 Introduction
- 2 Verification
- 3 Simulation
- 4 Challenges

Global Properties

If one regards a sorting algorithm as a discrete dynamical system acting on the given set, then the sorted list is an **invariant** or fixed point. It is an attractor that is reached from any initial position in finite time (# steps).

Qualitative Analysis of Dynamical Systems

$$(\dot{x_1}, \dot{x_2}) = (x_1 - x_1^3 - x_2 - x_1x_2^2, x_1 + x_2 - x_1^2x_2 - x_2^3)$$



Invariant Equation

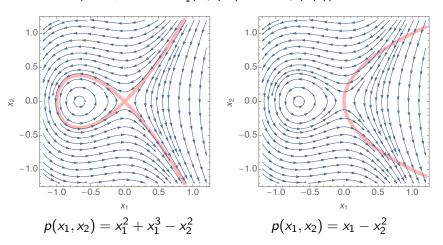
Algebraic

The solution for $\mathbf{x}_0 = (1,0)$ respects $|x_1(t)|^2 + x_2(t)^2 - 1 = 0$

$$x_1(t)^2 + x_2(t)^2 - 1 = 0$$

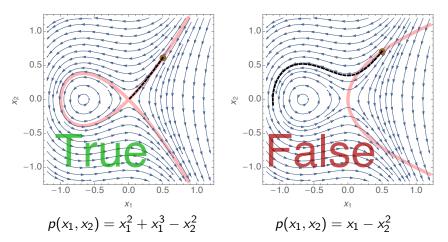
Problem I. Checking Invariance of Algebraic Equations

Given
$$\dot{\mathbf{x}} = (-2x_2, -2x_1 - 3x_1^2), \ p(\mathbf{x}_0) = 0$$
, is $p(\mathbf{x}(t)) = 0$ for all t ?



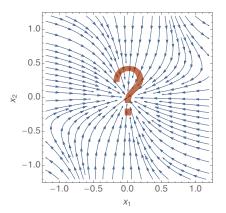
Problem I. Checking Invariance of Algebraic Equations

Given
$$\dot{\mathbf{x}} = (-2x_2, -2x_1 - 3x_1^2), \ p(\mathbf{x}_0) = 0$$
, is $p(\mathbf{x}(t)) = 0$ for all t ?



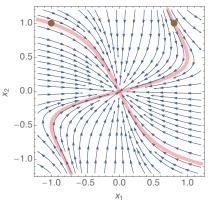
Problem II. Generate Algebraic Invariant Equations

Given $\dot{\mathbf{x}} = (-x_1 + 2x_1^2x_2, -x_2)$, how to generate p such that $p(\mathbf{x}(t)) = 0$?



Problem II. Generate Algebraic Invariant Equations

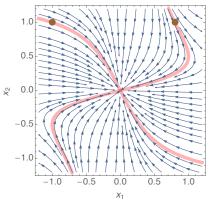
Given $\dot{\mathbf{x}} = (-x_1 + 2x_1^2x_2, -x_2)$, how to generate p such that $p(\mathbf{x}(t)) = 0$?



$$p_{(x_1(0),x_2(0))}(x_1,x_2) = (x_2(0) - x_1(0)x_2(0)^2)x_1 - x_1(0)(x_2 - x_1x_2^2) = 0$$

Problem II. Generate Algebraic Invariant Equations

Given $\dot{\mathbf{x}} = (-x_1 + 2x_1^2x_2, -x_2)$, how to generate p such that $p(\mathbf{x}(t)) = 0$?



$$\begin{split} p_{(x_1(0),x_2(0))}\big(x_1,x_2\big) &= (x_2(0)-x_1(0)x_2(0)^2)x_1 - x_1(0)\big(x_2-x_1x_2^2\big) = 0 \\ &\frac{x_1}{x_2-x_1x_2^2} \text{ is an invariant } \textbf{rational function}. \end{split}$$

Gradient
$$\nabla p := (\frac{\partial p}{\partial x_1}, \dots, \frac{\partial p}{\partial x_n})$$

Lie Derivation
$$\mathfrak{D}_{\mathbf{f}}(p) := \frac{dp(\mathbf{x}(t))}{dt} = \langle \nabla p, \mathbf{f} \rangle$$
 $(\dot{\mathbf{x}} = \mathbf{f})$

Singular Locus

$$\mathsf{SL}(p) := \left\{ \mathbf{x} \in \mathbb{R}^n \mid \nabla p = \mathbf{0} \right\} = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \frac{\partial p}{\partial x_1} = 0 \land \dots \land \frac{\partial p}{\partial x_n} = 0 \right\}$$

 $\mathbf{x} \in V_{\mathbb{R}}(p)$ $(p(\mathbf{x}) = 0)$ is singular if $\mathbf{x} \in SL(p)$, regular otherwise.

Notation for " $S \subseteq \mathbb{R}^n$ is invariant for \mathbf{f} "

$$S \rightarrow [\dot{\mathbf{x}} = \mathbf{f}]S$$

The set S is an invariant set for \mathbf{f}

Starting with \mathbf{x}_0 s.t $\mathbf{x}_0 \in S$: for all t > 0, $\mathbf{x}(t)$ solution of the IVP $(\dot{\mathbf{x}} = \mathbf{f}, \mathbf{x}(0) = \mathbf{x}_0)$ is in S

N.B. Treating $\dot{\mathbf{x}} = \mathbf{f}$ as a program, one can think of the top formula as representing the Hoare triple $\{S\}$ $\dot{\mathbf{x}} = \mathbf{f}$ $\{S\}$.

Notation for " $S \subseteq \mathbb{R}^n$ is invariant for \mathbf{f} "

$$S \rightarrow [\dot{\mathbf{x}} = \mathbf{f}]S$$
 \equiv

The set S is an invariant set for \mathbf{f}

Starting with \mathbf{x}_0 s.t $\mathbf{x}_0 \in S$: for all t > 0, $\mathbf{x}(t)$ solution of the IVP $(\dot{\mathbf{x}} = \mathbf{f}, \mathbf{x}(0) = \mathbf{x}_0)$ is in S

N.B. Treating $\dot{\mathbf{x}} = \mathbf{f}$ as a program, one can think of the top formula as representing the Hoare triple $\{S\}$ $\dot{\mathbf{x}} = \mathbf{f}$ $\{S\}$.

Notation for " $S \subseteq \mathbb{R}^n$ is invariant for \mathbf{f} "

$$S \to [\dot{\mathbf{x}} = \mathbf{f}]S$$
 \equiv

The set S is an invariant set for \mathbf{f}

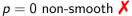
≣

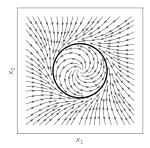
Starting with \mathbf{x}_0 s.t $\mathbf{x}_0 \in S$: for all t > 0, $\mathbf{x}(t)$ solution of the IVP $(\dot{\mathbf{x}} = \mathbf{f}, \mathbf{x}(0) = \mathbf{x}_0)$ is in S

N.B. Treating $\dot{\mathbf{x}} = \mathbf{f}$ as a program, one can think of the top formula as representing the Hoare triple $\{S\}$ $\dot{\mathbf{x}} = \mathbf{f}$ $\{S\}$.

Necessary and sufficient for smooth invariant manifolds (Lie, 1893).

$$\text{(Lie)} \frac{\rho = 0 \to (\mathfrak{D}_{\mathbf{f}}(\rho) = 0 \land \nabla \rho \neq \mathbf{0})}{(\rho = 0) \to [\dot{\mathbf{x}} = \mathbf{f}] \ (\rho = 0)}$$





$$p=0$$
 smooth \checkmark

No flow in the problem variables at singularities on the variety

$$(\mathsf{Lie}^{\circ})\frac{p=0\to \big(\mathfrak{D}_{\mathbf{f}}(p)=0\land \big(\nabla p=\mathbf{0}\to \mathbf{f}=\mathbf{0}\big)\big)}{(p=0)\to [\dot{\mathbf{x}}=\mathbf{f}]\ (p=0)}$$

Flow at singularities on the variety is directed into the variety

$$(\mathsf{Lie}^*) \frac{p = 0 \to (\mathfrak{D}_{\mathbf{f}}(p) = 0 \land (\nabla p = \mathbf{0} \to p(\mathbf{x} + \lambda \mathbf{f}) = 0))}{(p = 0) \to [\dot{\mathbf{x}} = \mathbf{f}] \ (p = 0)}$$

No flow in the problem variables at singularities on the variety

$$(\mathsf{Lie}^{\circ}) \frac{p = 0 \to \big(\mathfrak{D}_{\mathbf{f}}(p) = 0 \land \big(\nabla p = \mathbf{0} \to \mathbf{f} = \mathbf{0}\big)\big)}{(p = 0) \to [\dot{\mathbf{x}} = \mathbf{f}] \ (p = 0)}$$

Flow at singularities on the variety is directed into the variety

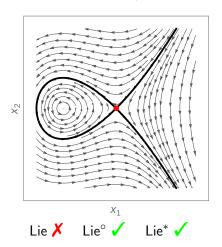
$$(\mathsf{Lie}^*) \frac{p = 0 \to \big(\mathfrak{D}_{\mathbf{f}}(p) = 0 \land (\nabla p = \mathbf{0} \to p(\mathbf{x} + \lambda \mathbf{f}) = 0)\big)}{(p = 0) \to [\dot{\mathbf{x}} = \mathbf{f}] \ (p = 0)}$$

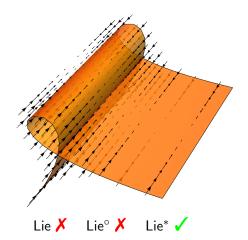
No flow in the problem variables at singularities on the variety

$$(\mathsf{Lie}^{\circ})\frac{p=0\to \big(\mathfrak{D}_{\mathbf{f}}(p)=0\land \big(\nabla p=\mathbf{0}\to \mathbf{f}=\mathbf{0}\big)\big)}{(p=0)\to [\dot{\mathbf{x}}=\mathbf{f}]\ (p=0)}$$

Flow at singularities on the variety is directed into the variety

$$(\mathsf{Lie}^*) \frac{p = 0 \to \big(\mathfrak{D}_{\mathbf{f}}(p) = 0 \land \big(\nabla p = \mathbf{0} \to p(\mathbf{x} + \lambda \mathbf{f}) = 0\big)\big)}{(p = 0) \to [\dot{\mathbf{x}} = \mathbf{f}] \ (p = 0)} \ .$$

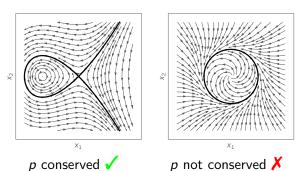




[Platzer, J. Log. Comput. 2010]

Necessary and sufficient for conserved quantities (integrals of motion).

$$(\mathsf{FI})\frac{\mathfrak{D}_{\mathbf{f}}(p) = 0}{(p = 0) \to [\dot{\mathbf{x}} = \mathbf{f}] \ (p = 0)}$$



Continuous consecutions (C-c) and **polynomial consecutions** (P-c) are Darboux polynomials (Darboux, 1878).

$$(\mathsf{C-c})\frac{\exists \lambda \in \mathbb{R}, \ \mathfrak{D}_{\mathbf{f}}(p) = \lambda p}{(p=0) \to [\dot{\mathbf{x}} = \mathbf{f}] \ (p=0)},$$

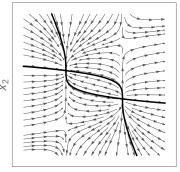
$$(P-c)\frac{\exists \lambda \in \mathbb{R}[\mathbf{x}], \ \mathfrak{D}_{\mathbf{f}}(p) = \lambda p}{(p=0) \to [\dot{\mathbf{x}} = \mathbf{f}] \ (p=0)} \ .$$

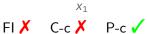
Extensions of FI

[Sankaranarayanan et al., FMSD 2008]

$$\mathbf{f} = (3(x_1^2 - 4), -x_2^2 + x_1x_2 + 3), \qquad p = x_2^4 + 2x_1x_2^3 + 6x_2^2 + 2x_1x_2 + x_1^2 + 3,$$

$$\mathfrak{D}_{\mathsf{f}}(p) = \underbrace{\left(6x_1 - 4x_2\right)}_{\lambda} p$$



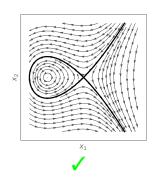


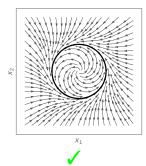
Differential Radical Invariants (DRI)

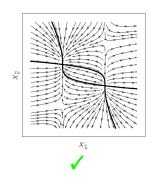
[G. et al., TACAS 2014, SAS 2014]

Necessary and sufficient for invariant varieties.

$$(\mathsf{DRI})\frac{\rho=0\to \bigwedge_{i=0}^{N-1}\mathfrak{D}_{\mathbf{f}}^{(i)}(\rho)=0}{(\rho=0)\to [\dot{\mathbf{x}}=\mathbf{f}]\ (\rho=0)}$$







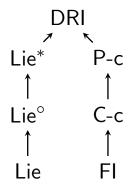
$$(\mathsf{R}_A) \frac{A}{S_A : T_A \longrightarrow [\dot{\mathbf{x}} = \mathbf{f}] S_A : T_A} \qquad (\mathsf{R}_B) \frac{B}{S_B : T_B \longrightarrow [\dot{\mathbf{x}} = \mathbf{f}] S_B : T_B}$$

Partial Order

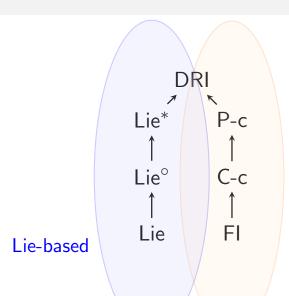
 $R_A \preccurlyeq R_B$ if and only if $A \implies B$ and T_A is a "subtype" of T_B .

- $R_A \sim R_B \ (R_A \leq R_B \text{ and } R_A \geq R_B)$ Equivalence.
- $R_A \prec R_B \ (R_A \preccurlyeq R_B \ \text{and} \ R_A \not \succcurlyeq R_B)$ Strict increase of deductive power

Algebraic Sets Deductive Hierarchy



Algebraic Sets Deductive Hierarchy



Darboux-based

So far we have only seen algebraic sets: p = 0

- For $\wedge_i p_i = 0$, we can rewrite using $\sum_i p_i^2 = 0$
- We can do better [SAS'14]

What about semi-algebraic sets:

- Sets of the form $p \le 0$
- Closed Sets
- Arbitrary Sets: Boolean formulae with polynomial equalities and inequalities

(Non-strict) Barrier Certificate ✓

$$(\forall \mathbf{x} \in \mathbb{R}^n, \mathfrak{D}_\mathbf{f}(p) \leq 0) \longrightarrow p \leq 0$$
 is a positive invariant

Unsound Barrier Certificate X

$$(\forall \mathbf{x} \, s.t. \, \mathbf{p}(\mathbf{x}) = \mathbf{0}, \mathfrak{D}_{\mathbf{f}}(p) \leq 0) \longrightarrow p \leq 0$$
 is a positive invariant

Strict Barrier Certificate ✓

$$(\forall \mathbf{x} \ s.t. \ p(\mathbf{x}) = 0, \mathfrak{D}_{\mathbf{f}}(\mathbf{p}) < \mathbf{0}) \longrightarrow p \leq 0$$
 is a positive invariant

27

Conservative Lifting of Barrier Certificates to Boolean Connectives

Differential Invariants (DI)

$$(\mathsf{DI})\frac{D(S)^{\mathbf{f}}_{\dot{\mathbf{x}}}}{S \to [\dot{\mathbf{x}} = \mathbf{f}] \ S},$$

 $D(S)_{\dot{\mathbf{x}}}^{\mathbf{f}}$: substitute each $\dot{\mathbf{x}}_i$ in D(S) with $\mathbf{f}_i(\mathbf{x})$

$$\begin{array}{lll} D(r) & = 0 & \text{for numbers,} \\ D(x) & = \dot{x} & \text{for variables,} \\ D(a+b) & = D(a)+D(b), \\ D(a\cdot b) & = D(a)\cdot b+a\cdot D(b), \\ D(a\leq b) & \equiv D(a)\leq D(b), \text{ accordingly for } \geq,>,<. \text{ (BC)} \\ D(S_1\wedge S_2) & \equiv D(S_1)\wedge D(S_2), \\ D(S_1\vee S_2) & \equiv D(S_1)\wedge D(S_2), \text{ (\wedge here is important for soundness)} \end{array}$$

Liu, Zhan, Zhao (LZZ) Characterization [EMSOFT'2011]

Definitions

$$\begin{aligned} & \operatorname{In}_f(S) \equiv \{\mathbf{x} \in \mathbb{R}^n \mid \exists \ \epsilon > 0. \ \forall \ t \in (0, \epsilon). \ \mathbf{x}(t) \in S\}, \\ & \operatorname{In}_{(-f)}(S) \equiv \{\mathbf{x} \in \mathbb{R}^n \mid \exists \ \epsilon > 0. \ \forall \ t \in (0, \epsilon). \ \mathbf{x}(-t) \in S\}, \end{aligned}$$

Characterization

An arbitrary set $S \subset \mathbb{R}^n$ is a positive invariant for \mathbf{f} if and only if

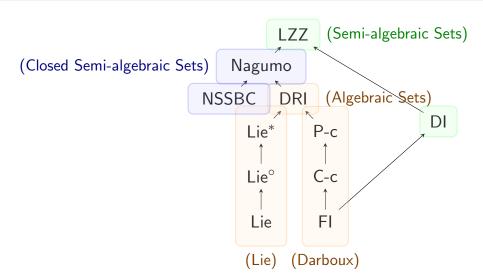
$$S \subseteq \operatorname{In}_f(S)$$
 and $S^c \subseteq \operatorname{In}_{(-f)}(S^c)$

or equivalently

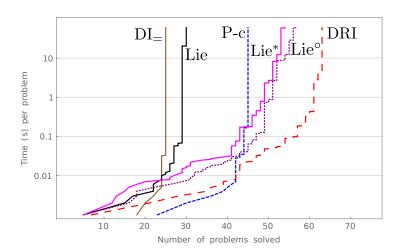
$$\operatorname{In}_{(-f)}(S) \subseteq S \subseteq \operatorname{In}_f(S)$$

• $In_f(S)$ can be computed using high-order Lie derivatives!

Proof Rules for Checking Invariance of Semi-algebraic Sets



Experimental Performance: Algebraic Sets



Template-Based

- Fix a template: generic polynomials with symbolic coefficients
- Use sufficient conditions to derive constraints over the coefficients
- Solve the system
- In practice:
 - templates of the form p=0 (algebraic sets) with Darboux condition $(\mathfrak{D}_{\mathbf{f}}(p) \in \langle p \rangle)$ work for $n \leq 10$ and $d \leq 3$.
 - templates of the form $p \le 0$ relying on Barrier Certificates (SOSTools)

Discrete Abstraction

- Discrete the space with the signs of a given set of polynomials
- Relies on sufficient conditions to remove spurious transitions
- Issue: How to populate and eventually refine the initial set of polynomials

Suppose we have a 2-dimensional ODE $(\dot{x}_1, \dot{x}_2) = (x_1, x_2)$

Suppose we have a 2-dimensional ODE
$$(\dot{x}_1,\dot{x}_2)=(x_1,x_2)$$

1 Start with parametric h of degree 1: $h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$

Suppose we have a 2-dimensional ODE
$$(\dot{x}_1,\dot{x}_2)=(x_1,x_2)$$

- 1 Start with parametric h of degree 1: $h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$
- 2 Start with N=1

Suppose we have a 2-dimensional ODE
$$(\dot{x}_1,\dot{x}_2)=(x_1,x_2)$$

- 1 Start with parametric h of degree 1: $h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$
- 2 Start with N=1
- **3** Find $\beta \in \mathbb{R}$ such that: $\mathfrak{D}_{\mathbf{f}}(h) = \beta h$

Suppose we have a 2-dimensional ODE
$$(\dot{x}_1,\dot{x}_2)=(x_1,x_2)$$

- 1 Start with parametric h of degree 1: $h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$
- 2 Start with N=1
- **3** Find $\beta \in \mathbb{R}$ such that: $\mathfrak{D}_{\mathbf{f}}(h) = \beta h$

$$\mathfrak{D}_{\mathbf{f}}(h) = \alpha_1 x_1 + \alpha_2 x_2 = \beta(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3)$$

Suppose we have a 2-dimensional ODE
$$(\dot{x}_1,\dot{x}_2)=(x_1,x_2)$$

- **1** Start with parametric h of degree 1: $h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$
- 2 Start with N=1
- **3** Find $\beta \in \mathbb{R}$ such that: $\mathfrak{D}_{\mathbf{f}}(h) = \beta h$

$$\mathfrak{D}_{\mathbf{f}}(h) = \alpha_1 x_1 + \alpha_2 x_2 = \beta(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3)$$

$$\begin{array}{lll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

Suppose we have a 2-dimensional ODE
$$(\dot{x}_1, \dot{x}_2) = (x_1, x_2)$$

- **1** Start with parametric h of degree 1: $h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$
- 2 Start with N=1
- **3** Find $\beta \in \mathbb{R}$ such that: $\mathfrak{D}_{\mathbf{f}}(h) = \beta h$

$$\mathfrak{D}_{\mathbf{f}}(h) = \alpha_1 x_1 + \alpha_2 x_2 = \beta(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3)$$

$$\begin{array}{llll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

$$h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$$

$$\begin{array}{lll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

- Max dim of ker of $M(\beta) \rightsquigarrow$ more freedom for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$
- Increases the chances of finding first integrals
- Dually, minimize the rank of $M(\beta)$

$$h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$$

$$\begin{array}{lll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

- Max dim of ker of $M(\beta) \rightsquigarrow$ more freedom for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$
- Increases the chances of finding first integrals
- Dually, minimize the rank of $M(\beta)$

$$h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$$

$$\begin{array}{lll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

- Max dim of ker of $M(\beta) \rightsquigarrow$ more freedom for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$
- Increases the chances of finding first integrals
- Dually, minimize the rank of $M(\beta)$

$$h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$$

$$\begin{array}{lll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

- Max dim of ker of $M(\beta) \rightsquigarrow$ more freedom for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$
- Increases the chances of finding first integrals
- Dually, minimize the rank of $M(\beta) \rightsquigarrow NP$ -hard [Buss et al. 1999]

$$h = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$$

$$\begin{array}{lll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

- Max dim of ker of $M(\beta) \rightsquigarrow$ more freedom for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$
- Increases the chances of finding first integrals
- Dually, minimize the rank of $M(\beta) \rightsquigarrow NP$ -hard [Buss et al. 1999]

$$h = x_2(0)x_1 - x_1(0)x_2$$

Simulation (Time Travel)

A peek in the future (or the past) of a concrete model for a concrete initial (or final) condition. Essentially by "executing" the model step by step: only a **Local** recipe is needed.

Verification (Time Abstraction)

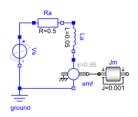
Qualitative analysis of the geometry (shape) of the state space as it captures **Global** properties.

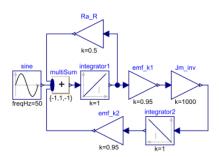
Local description defines the global properties which in turn benefit numerical approximations (eg. Geometrical Integration)

Outline

- 1 Introduction
- 2 Verification
- 3 Simulation
- 4 Challenges

Block Diagram vs. State Flow





Differential-Algebraic Equations (DAE)

 Verification and Faithful Simulation for cyber-physical systems with DAE

Differential-Algebraic Equations (DAE)

 Verification and Faithful Simulation for cyber-physical systems with DAE

- $\mathbf{0} = \mathbf{F}(\mathbf{x}, \dot{\mathbf{x}}, t)$
- $\begin{array}{l}
 \bullet \\
 \mathbf{0} = \mathbf{g}(\mathbf{y}, \mathbf{x})
 \end{array}$
- Compositional design
- Tools: Dymola (Dassault Systèmes), Modelica

if Guard do Differential Equation

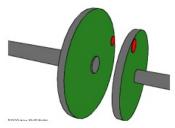
- Guard: predicate in the state variables and their time derivatives.
- **Differential Equation**: equation, **implicit** or explicit, in the state variables and their time derivatives

if Guard do Differential Equation

- Guard: predicate in the state variables and their time derivatives.
- Differential Equation: equation, implicit or explicit, in the state variables and their time derivatives.

When a guard holds, its equation is enforced.

Ideal Clutch



if t do
$$J_1\dot{\omega}_1 = \tau_1$$
 (e₁)
if t do $J_2\dot{\omega}_2 = \tau_2$ (e₂)
if γ do $\omega_1 - \omega_2 = 0$ (e₃)
if γ do $\tau_1 + \tau_2 = 0$ (e₄)
if $\neg \gamma$ do $\tau_1 = 0$ (e₅)
if $\neg \gamma$ do $\tau_2 = 0$ (e₆)

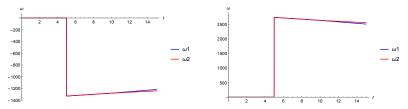
- State Variables: the angular velocities ω_1 and ω_2
- ullet γ is an input signal modelling the pedal's position

Clutch Disengaged, $\gamma = f$ Ordinary Differential Equation

Clutch Engaged, $\gamma = t$ Differential Algebraic Equation

if t do
$$J_1\dot{\omega}_1 = \tau_1$$
 (e₁)
if t do $J_2\dot{\omega}_2 = \tau_2$ (e₂)
if γ do $\omega_1 - \omega_2 = 0$ (e₃)
if γ do $\tau_1 + \tau_2 = 0$ (e₄)
if $\neg \gamma$ do $\tau_2 = 0$ (e₅)
if $\neg \gamma$ do $\tau_2 = 0$ (e₆)

- Dymola crashes with a division by zero
- Mathematica treats resets as initializations (nondeterministic behavior)



The solution may be discontinuous when $\gamma:f\to t$ because of the additional constraint $\omega_1-\omega_2=0$

Problem 1 How to handle overdetermined systems?

- The angular velocities ω_1 and ω_2 are **known**
- ullet γ switches to t (the driver engages the clutch)

$$\omega_1 - \omega_2 = 0$$
 is **enforced**

- The system becomes overdetermined
- The solution is not smooth and even discontinuous

Problem 2 What is the meaning of the derivatives?

Some equations must hold for $\gamma = t$ and $\gamma = f$.

if t do
$$J_1\dot{\omega}_1= au_1$$
 (e₁)
if t do $J_2\dot{\omega}_2= au_2$ (e₂)

- What is the **meaning** of derivatives when $\gamma : f \rightarrow t$?
- How to compute the reset values ?

Solution for Overdetermined Systems

[Benveniste, Caillaud, G., HSCC 2017]

Causality Principle

The additional constraints are

- caused by (consequence of) the current status, and
- enforced at the immediate next instant.

Causality Principle

The additional constraints are

- caused by (consequence of) the current status, and
- enforced at the immediate next instant

t: present

$$\omega_1(t) - \omega_2(t) \neq 0$$
 $\omega_1(t+\delta) - \omega_2(t+\delta) = 0$
 $t+\delta$, $0 < \delta << 1$; immediate future

[Benveniste, Caillaud, G., HSCC 2017]

Causality Principle

The additional constraints are

- caused by (consequence of) the current status, and
- enforced at the immediate next instant

t: present

$$\omega_1(t) - \omega_2(t) \neq 0$$
 $\omega_1(t+\delta) - \omega_2(t+\delta) = 0$
 $t+\delta$, $0 < \delta << 1$; immediate future

 $\delta \in {}^{\star}\mathbb{R}$ is a positive infinitesimal

Nonstandard reals, Hyperreals

Infinite Sequence of Reals

- $\delta = \langle \delta_1, \delta_2, \dots \rangle$
- $\delta_i \in \mathbb{R}$
- Not necessarily convergent
- $\langle 1, \frac{1}{2}, \frac{1}{3}, \dots \rangle$ is a (positive) infinitesimal
- $r = \langle r, r, r, \dots \rangle, r \in \mathbb{R}$
- Functions over the reals can be internalized
- $x(\langle t_1, t_2, \dots \rangle) = \langle x(t_1), x(t_2), \dots \rangle$

Infinite Sequence of Reals

- $\delta = \langle \delta_1, \delta_2, \dots \rangle$
- $\delta_i \in \mathbb{R}$
- Not necessarily convergent
- $\langle 1, \frac{1}{2}, \frac{1}{3}, \dots \rangle$ is a (positive) infinitesimal
- $r = \langle r, r, r, \ldots \rangle, r \in \mathbb{R}$
- Functions over the reals can be internalized
- $x(\langle t_1, t_2, \ldots \rangle) = \langle x(t_1), x(t_2), \ldots \rangle$

Nonstandard reals, Hyperreals

Infinite Sequence of Reals

•
$$\delta = \langle \delta_1, \delta_2, \dots \rangle$$

- $\delta_i \in \mathbb{R}$
- Not necessarily convergent
- $\langle 1, \frac{1}{2}, \frac{1}{3}, \dots \rangle$ is a (positive) infinitesimal
- $r = \langle r, r, r, \dots \rangle, r \in \mathbb{R}$
- Functions over the reals can be internalized
- $x(\langle t_1, t_2, \ldots \rangle) = \langle x(t_1), x(t_2), \ldots \rangle$

47 / 62

Nonstandard reals, Hyperreals

Infinite Sequence of Reals

•
$$\delta = \langle \delta_1, \delta_2, \dots \rangle$$

- $\delta_i \in \mathbb{R}$
- Not necessarily convergent
- $\langle 1, \frac{1}{2}, \frac{1}{3}, \dots \rangle$ is a (positive) infinitesimal
- $r = \langle r, r, r, \ldots \rangle, r \in \mathbb{R}$
- Functions over the reals can be internalized
- $x(\langle t_1, t_2, \dots \rangle) = \langle x(t_1), x(t_2), \dots \rangle$

Nonstandard Difference Quotient

Let $\delta \in {}^{\star}\mathbb{R}$ be a non zero infinitesimal.

$$\frac{x(t+\delta)-x(t)}{\delta}$$

Proposition

A real function x is differentiable at t if and only if there exists a real number b such that

$$\frac{x(t+\epsilon)-x(t)}{\epsilon}\sim b$$

for any non zero infinitesimal ϵ .

Derivatives as Difference Quotients

$$\dot{x}$$
 is replaced by $\frac{x(t+\delta)-x(t)}{\delta}=\frac{x^{\bullet}-x}{\delta}$

- Shift forward (when needed)
- Formal substitution of time derivatives into difference quotient.

Solving Nonstandard Systems

$$\begin{array}{lll} \text{if t do} & J_1 \frac{\omega_1^\bullet - \omega_1}{\delta} = \tau_1 & (e_1^\delta) \\ \\ \text{if t do} & J_2 \frac{\omega_2^\bullet - \omega_2}{\delta} = \tau_2 & (e_2^\delta) \\ \\ \text{if } \gamma & \text{do} & \omega_1^\bullet - \omega_2^\bullet = 0 & (e_3^\bullet) \\ \\ \text{if } \gamma & \text{do} & \tau_1 + \tau_2 = 0 & (e_4) \\ \\ \text{if } \neg \gamma & \text{do} & \tau_2 = 0 & (e_6) \end{array}$$

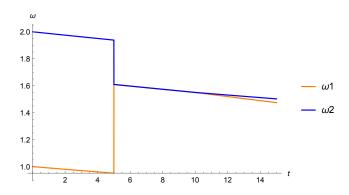
Solving Nonstandard Systems

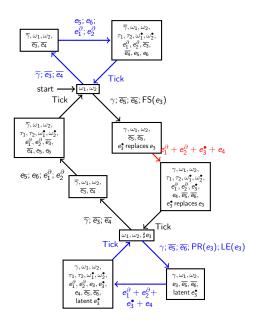
$$\omega_1^{\bullet} = \omega_2^{\bullet} = \frac{J_1 \omega_1 + J_2 \omega_2}{J_1 + J_2}$$

Standardization

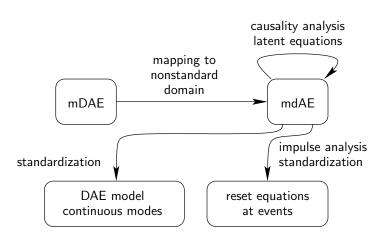
- Automated procedure for a class of systems
- Generalization remains a challenge

Expected Simulation





Unifying Discrete and Continuous Dynamics



Challenges

Combining Static Analysis and Symbolic Computation

Invariants Generation

- Extends previous work (algebraic approach)
- Approximate exact computations to scale

Simulation of multi-mode DAE

- Well-founded operational semantics (compilation, index reduction)
- Preserve composionality in presence of mode changes
- Proper handling of zero-crossing (detection and consistent initialization)
- Cascades of zero-crossings (sliding modes)
- Investigate the use of static analysis and symbolic computation

Combining Static Analysis and Symbolic Computation

Invariants Generation

- Extends previous work (algebraic approach)
- Approximate exact computations to scale

Simulation of multi-mode DAE

- Well-founded operational semantics (compilation, index reduction)
- Preserve composionality in presence of mode changes
- Proper handling of zero-crossing (detection and consistent initialization)
- Cascades of zero-crossings (sliding modes)
- ◆ Investigate the use of static analysis and symbolic computation

Combining Static Analysis and Symbolic Computation

Invariants Generation

- Extends previous work (algebraic approach)
- Approximate exact computations to scale

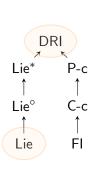
Simulation of multi-mode DAE

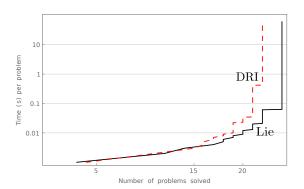
- Well-founded operational semantics (compilation, index reduction)
- Preserve composionality in presence of mode changes
- Proper handling of zero-crossing (detection and consistent initialization)
- Cascades of zero-crossings (sliding modes)
- Investigate the use of static analysis and symbolic computation

Thanks for your attention!

Smooth invariant manifolds (Lie vs DRI)

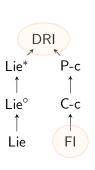
Lie and DRI decide invariance for smooth invariant manifolds.

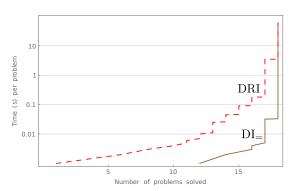




Functional invariants (DI vs DRI)

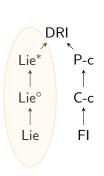
DI= and DRI decide invariance of varieties of conserved quantities.

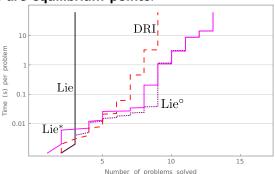




Singularities at Equilibria (Lie, Lie^o & Lie^{*} vs DRI)

Lie°, Lie* and DRI decide invariance for varieties of with singularities that are equilibrium points.





$$(h_1 > \max(h_2, \dots, h_m) \to \mathfrak{D}_{\mathbf{f}}(h_1) < 0)$$

$$\land (h_1 < \max(h_2, \dots, h_m) \to \mathfrak{D}_{\mathbf{f}}(\max(h_2, \dots, h_m)) < 0)$$

$$\land (h_1 = \max(h_2, \dots, h_m) \to \mathfrak{D}_{\mathbf{f}}(h_1) < 0 \land \mathfrak{D}_{\mathbf{f}}(\max(h_2, \dots, h_m)) < 0)$$

$$(g_1 < \min(g_2, \dots, g_m) \to \mathfrak{D}_{\mathbf{f}}(g_1) < 0)$$

$$\land (g_1 > \min(g_2, \dots, g_m) \to \mathfrak{D}_{\mathbf{f}}(\min(g_2, \dots, g_m)) < 0)$$

$$\land (g_1 = \min(g_2, \dots, g_m) \to \mathfrak{D}_{\mathbf{f}}(g_1) < 0 \lor \mathfrak{D}_{\mathbf{f}}(\min(g_2, \dots, g_m)) < 0)$$