Characterizing Invariant Algebraic Sets for Polynomial Differential Equations

Khalil Ghorbal

INRIA

Rennes, France May 13th, 2016

Motivations

Qualitative Analysis of Differential Equations is important in its own right!

Motivations

Qualitative Analysis of Differential Equations is important in its own right!

Practical Use of Invariant Regions

- Verification and simulation of dynamical and hybrid systems
- Controllers' Synthesis, Stability Analysis
- Numerical Integration, Integrability
- . . .

Given a polynomial ordinary differential equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$.

Given a polynomial ordinary differential equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$.

Initial Value Problem

$$\mathbf{x}(t), t \in U$$
 solution of the Cauchy problem $\left(\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}(\mathbf{x}), \mathbf{x}(0) = \mathbf{x}_0\right)$

Given a polynomial ordinary differential equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$.

Initial Value Problem

$$\mathbf{x}(t), t \in U$$
 solution of the Cauchy problem $\left(\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}(\mathbf{x}), \mathbf{x}(0) = \mathbf{x}_0\right)$

Orbit

$$\mathcal{O}_{\mathbf{x}_0} := \{\mathbf{x}(t) \mid t \in U\} = \{\mathbf{x} \in \mathbb{R}^n \mid \exists t \in \mathbb{R}, \mathbf{x} = \varphi_t(\mathbf{x}_0)\} \subset \mathbb{R}^n$$

Given a polynomial ordinary differential equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$.

Initial Value Problem

$$\mathbf{x}(t), t \in U$$
 solution of the Cauchy problem $\left(\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}(\mathbf{x}), \mathbf{x}(0) = \mathbf{x}_0\right)$

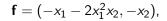
Orbit

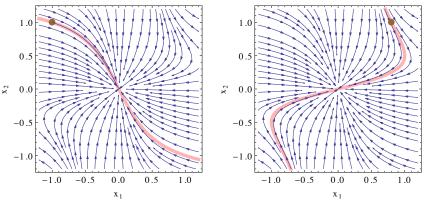
$$\mathcal{O}_{\mathbf{x}_0} := \{ \mathbf{x}(t) \mid t \in U \} = \{ \mathbf{x} \in \mathbb{R}^n \mid \exists t \in \mathbb{R}, \mathbf{x} = \varphi_t(\mathbf{x}_0) \} \subset \mathbb{R}^n$$

Invariant Region $S \subset \mathbb{R}^n$

$$\forall \mathbf{x}_0 \in S, \forall t \in U, \mathbf{x}(t) \in S$$

Algebraic Invariant Equations





$$p(x_1, x_2) = (x_2(0) - x_1(0)x_2(0)^2)x_1 - x_1(0)(x_2 - x_1x_2^2) = 0$$

Gradient

$$\nabla p := \left(\frac{\partial p}{\partial x_1}, \dots, \frac{\partial p}{\partial x_n}\right)$$

Gradient

$$\nabla p := \left(\frac{\partial p}{\partial x_1}, \dots, \frac{\partial p}{\partial x_n}\right)$$

Lie Derivation

$$\mathfrak{D}_{\mathbf{f}}(p) := \frac{dp(\mathbf{x}(t))}{dt} = \nabla p \cdot \mathbf{f} \qquad (\dot{\mathbf{x}} = \mathbf{f})$$

Gradient

$$\nabla p := \left(\frac{\partial p}{\partial x_1}, \dots, \frac{\partial p}{\partial x_n}\right)$$

Lie Derivation

$$\mathfrak{D}_{\mathbf{f}}(p) := \frac{dp(\mathbf{x}(t))}{dt} = \nabla p \cdot \mathbf{f} \qquad (\dot{\mathbf{x}} = \mathbf{f})$$

Sets of Common Roots and Vanishing Ideals

$$Y \subset \mathbb{R}[\mathbf{x}], \ V(Y) := \{\mathbf{x} \in \mathbb{R}^n \mid \forall p \in Y, p(\mathbf{x}) = 0\}$$

 $S \subset \mathbb{R}^n, \ I(S) := \{p \in \mathbb{R}[\mathbf{x}] \mid \forall \mathbf{x} \in S, p(\mathbf{x}) = 0\}$

Gradient

$$\nabla p := \left(\frac{\partial p}{\partial x_1}, \dots, \frac{\partial p}{\partial x_n}\right)$$

Lie Derivation

$$\mathfrak{D}_{\mathbf{f}}(p) := \frac{dp(\mathbf{x}(t))}{dt} = \nabla p \cdot \mathbf{f} \qquad (\dot{\mathbf{x}} = \mathbf{f})$$

Sets of Common Roots and Vanishing Ideals

$$Y \subset \mathbb{R}[\mathbf{x}], \ V(Y) := \{\mathbf{x} \in \mathbb{R}^n \mid \forall p \in Y, p(\mathbf{x}) = 0\}$$

 $S \subset \mathbb{R}^n, \ I(S) := \{p \in \mathbb{R}[\mathbf{x}] \mid \forall \mathbf{x} \in S, p(\mathbf{x}) = 0\}$

Closure (Zariski Topology)

$$\bar{\mathcal{O}}_{\mathbf{x}_0} := V(I(\mathcal{O}_{\mathbf{x}_0}))$$

Outline

- Introduction
- Main Results
- 3 Effective Generation
- 4 Conclusion

Properties of the Zariski Closure

Proposition1: Dimension and Integrability

$$\mathcal{O}_{\boldsymbol{x}_0}\subset \bar{\mathcal{O}}_{\boldsymbol{x}_0}$$

Properties of the Zariski Closure

Proposition1: Dimension and Integrability

$$\mathcal{O}_{\textbf{x}_0}\subset \bar{\mathcal{O}}_{\textbf{x}_0}$$

Proposition2: Stability under Lie derivation

 $I(\mathcal{O}(\mathbf{x}_0))$ is a (proper) differential ideal for $\mathfrak{D}_{\mathbf{f}}$, that is, $\mathfrak{D}_{\mathbf{f}}(p) \in I(\mathcal{O}(\mathbf{x}_0))$ for all $p \in I(\mathcal{O}(\mathbf{x}_0))$

Properties of the Zariski Closure

Proposition1: Dimension and Integrability

$$\mathcal{O}_{\textbf{x}_0}\subset \bar{\mathcal{O}}_{\textbf{x}_0}$$

Proposition2: Stability under Lie derivation

 $I(\mathcal{O}(\mathbf{x}_0))$ is a (proper) differential ideal for $\mathfrak{D}_{\mathbf{f}}$, that is, $\mathfrak{D}_{\mathbf{f}}(p) \in I(\mathcal{O}(\mathbf{x}_0))$ for all $p \in I(\mathcal{O}(\mathbf{x}_0))$

Example: Zariski Dense Varieties

$$\dot{x} = x \rightsquigarrow \mathcal{O}(\mathbf{x}_0) = [0, \infty[\rightsquigarrow I = \langle 0 \rangle \rightsquigarrow \bar{\mathcal{O}}_{\mathbf{x}_0} = V(I(\mathcal{O}(\mathbf{x}_0))) = \mathbb{R}$$

Characterizing Elements of $I(\mathcal{O}(\mathbf{x}_0))$

Definition: Differential Order

The differential order of $p \in \mathbb{R}[\mathbf{x}]$ denotes the length of the chain of ideals

$$\langle p \rangle \subset \langle p, \mathfrak{D}_{\mathbf{f}}(p) \rangle \subset \cdots \subset \left\langle p, \mathfrak{D}_{\mathbf{f}}(p), \ldots, \mathfrak{D}_{\mathbf{f}}^{(N_p-1)}(p) \right\rangle =: \partial p.$$

 $N_p = \operatorname{card}(\partial p)$ ($< \infty$ since $\mathbb R$ is Notherian).

Characterizing Elements of $I(\mathcal{O}(\mathbf{x}_0))$

Definition: Differential Order

The differential order of $p \in \mathbb{R}[\mathbf{x}]$ denotes the length of the chain of ideals

$$\langle p \rangle \subset \langle p, \mathfrak{D}_{f}(p) \rangle \subset \cdots \subset \left\langle p, \mathfrak{D}_{f}(p), \ldots, \mathfrak{D}_{f}^{(N_{p}-1)}(p) \right\rangle =: \partial p$$

 $N_p = \operatorname{card}(\partial p) \ (< \infty \ \operatorname{since} \ \mathbb{R} \ \operatorname{is} \ \operatorname{Notherian})$

Theorem

The polynomial p is in $I(\mathcal{O}(\mathbf{x}_0))$ if and only if $\mathfrak{D}_{\mathbf{f}}^{(i)}(p)(\mathbf{x}_0) = 0$, for all $i = 0, \ldots, N_p - 1$.

Characterizing Elements of $I(\mathcal{O}(\mathbf{x}_0))$

Definition: Differential Order

The differential order of $p \in \mathbb{R}[\mathbf{x}]$ denotes the length of the chain of ideals

$$\langle p \rangle \subset \langle p, \mathfrak{D}_{\mathsf{f}}(p) \rangle \subset \cdots \subset \left\langle p, \mathfrak{D}_{\mathsf{f}}(p), \ldots, \mathfrak{D}_{\mathsf{f}}^{(N_p-1)}(p) \right\rangle =: \partial p$$

 $N_p = \mathsf{card}(\partial p) \; (< \infty \; \mathsf{since} \; \mathbb{R} \; \mathsf{is} \; \mathsf{Notherian})$

Theorem

The polynomial p is in $I(\mathcal{O}(\mathbf{x}_0))$ if and only if $\mathfrak{D}_{\mathbf{f}}^{(i)}(p)(\mathbf{x}_0) = 0$, for all $i = 0, \ldots, N_p - 1$.

Proof Sketch

 \leftarrow : Since $\mathbf{x}(t)$ is analytic, $p(\mathbf{x}(t))$ is also analytic. Thus for a nonempty open neighborhood $V \subset U$ around 0, the null Taylor series of p(t) is equal to p, thus p=0 for all U.

Corollaries

Corollary1

An algebraic set $V(\langle p \rangle)$ is invariant for ${f f}$ if and only if

$$\partial p \subset I(V(\langle p \rangle))$$
.

Corollaries

Corollary1

An algebraic set $V(\langle p \rangle)$ is invariant for ${f f}$ if and only if

$$\partial p \subset I(V(\langle p \rangle))$$
.

Corollary2

For each \mathbf{x}_0 , there exists a unique (up to multiplication by a constant and rearrangement of its factors) $p \in \mathbb{R}[\mathbf{x}]$ such that

$$\partial p = I(\mathcal{O}(\mathbf{x}_0))$$
.

Given **f** and $p \in \mathbb{R}[\mathbf{x}]$, the invariance of $V(\langle p \rangle)$ is decidable.

$$\mathfrak{D}_{\mathbf{f}}^{(N_{p})}(p) = \sum_{i=0}^{N_{p}-1} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \left(\lambda_{i} \in \mathbb{R}[\mathbf{x}]\right) \wedge p = 0 \rightarrow \bigwedge_{i=1}^{N_{p}-1} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$$

$$\dots$$

$$\mathfrak{D}_{\mathbf{f}}^{(3)}(p) = \sum_{i=0}^{2} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \left(\lambda_{i} \in \mathbb{R}[\mathbf{x}]\right) \wedge p = 0 \rightarrow \bigwedge_{i=1}^{2} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$$

$$\mathfrak{D}_{\mathbf{f}}^{(2)}(p) = \lambda_{0} p + \lambda_{1} \mathfrak{D}_{\mathbf{f}}(p) \left(\lambda_{i} \in \mathbb{R}[\mathbf{x}]\right) \wedge p = 0 \rightarrow \mathfrak{D}_{\mathbf{f}}(p) = 0$$

$$\mathfrak{D}_{\mathbf{f}}(p) = \lambda p \left(\lambda \in \mathbb{R}[\mathbf{x}]\right)$$

- Existence of λ_i : Gröbner Basis
- $p = 0 \rightarrow \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$: (Universal) Quantifier Elimination

Given **f** and $p \in \mathbb{R}[\mathbf{x}]$, the invariance of $V(\langle p \rangle)$ is decidable.

$$\mathfrak{D}_{\mathbf{f}}^{(N_{p})}(p) = \sum_{i=0}^{N_{p}-1} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \ \land \ p = 0 \rightarrow \bigwedge_{i=1}^{N_{p}-1} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$$

$$\dots$$

$$\mathfrak{D}_{\mathbf{f}}^{(3)}(p) = \sum_{i=0}^{2} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \ \land \ p = 0 \rightarrow \bigwedge_{i=1}^{2} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$$

$$\mathfrak{D}_{\mathbf{f}}^{(2)}(p) = \lambda_{0} p + \lambda_{1} \mathfrak{D}_{\mathbf{f}}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \ \land \ p = 0 \rightarrow \mathfrak{D}_{\mathbf{f}}(p) = 0$$

$$\mathfrak{D}_{\mathbf{f}}(p) = \lambda_{p} \ (\lambda \in \mathbb{R}[\mathbf{x}])$$

- Existence of λ_i : Gröbner Basis
- $p = 0 \to \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$: (Universal) Quantifier Elimination

Given **f** and $p \in \mathbb{R}[\mathbf{x}]$, the invariance of $V(\langle p \rangle)$ is decidable.

$$\mathfrak{D}_{\mathbf{f}}^{(N_{p})}(p) = \sum_{i=0}^{N_{p}-1} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \ \land \ p = 0 \rightarrow \bigwedge_{i=1}^{N_{p}-1} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = \dots$$

$$\mathfrak{D}_{\mathbf{f}}^{(3)}(p) = \sum_{i=0}^{2} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \ \land \ p = 0 \rightarrow \bigwedge_{i=1}^{2} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$$

$$\mathfrak{D}_{\mathbf{f}}^{(2)}(p) = \lambda_{0} p + \lambda_{1} \mathfrak{D}_{\mathbf{f}}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \ \land \ p = 0 \rightarrow \mathfrak{D}_{\mathbf{f}}(p) = 0$$

$$\mathfrak{D}_{\mathbf{f}}(p) = \lambda_{p} \ (\lambda \in \mathbb{R}[\mathbf{x}])$$

- Existence of λ_i : Gröbner Basis
- $p = 0 \rightarrow \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$: (Universal) Quantifier Elimination

Given **f** and $p \in \mathbb{R}[\mathbf{x}]$, the invariance of $V(\langle p \rangle)$ is decidable.

$$\mathfrak{D}_{\mathbf{f}}^{(N_{p})}(p) = \sum_{i=0}^{N_{p}-1} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \ \land \ p = 0 \rightarrow \bigwedge_{i=1}^{N_{p}-1} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$$

$$\dots$$

$$\mathfrak{D}_{\mathbf{f}}^{(3)}(p) = \sum_{i=0}^{2} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \ \land \ p = 0 \rightarrow \bigwedge_{i=1}^{2} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$$

$$\mathfrak{D}_{\mathbf{f}}^{(2)}(p) = \lambda_{0} p + \lambda_{1} \mathfrak{D}_{\mathbf{f}}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \ \land \ p = 0 \rightarrow \mathfrak{D}_{\mathbf{f}}(p) = 0$$

- Existence of λ_i : Gröbner Basis
- $p = 0 \to \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$: (Universal) Quantifier Elimination

Remark: Generalization to a conjunction

Theorem (bis)

The polynomials p_1, \ldots, p_m are in $I(\mathcal{O}(\mathbf{x}_0))$ if and only if $\mathfrak{D}_{\mathbf{f}}^{(i)}(p_j)(\mathbf{x}_0) = 0$, for all $i = 0, \ldots, N-1$ and $j = 1, \ldots, m$, where N is the differential order of the ideal $\langle p_1, \ldots, p_m \rangle$ and satisfies $N \leq \max_j N_{p_j}$.

Practical Use

Over the reals, although

$$\bigwedge_{1}^{m} p_j = 0 \quad \equiv_{\mathbb{R}} \quad p := \sum_{1}^{m} p_j^2 = 0,$$

so one could use the Theorem as stated for one polynomial p, the SoS increases the complexity of the underlying algorithms.

Remark: Generalization to a conjunction

Theorem (bis)

The polynomials p_1, \ldots, p_m are in $I(\mathcal{O}(\mathbf{x}_0))$ if and only if $\mathfrak{D}_{\mathbf{f}}^{(i)}(p_j)(\mathbf{x}_0) = 0$, for all $i = 0, \ldots, N-1$ and $j = 1, \ldots, m$, where N is the differential order of the ideal $\langle p_1, \ldots, p_m \rangle$ and satisfies $N \leq \max_j N_{p_j}$.

Practical Use

Over the reals, although

$$\bigwedge_{1}^{m} p_j = 0 \quad \equiv_{\mathbb{R}} \quad p := \sum_{1}^{m} p_j^2 = 0,$$

so one could use the Theorem as stated for one polynomial p, the SoS increases the complexity of the underlying algorithms.

Outline

- Introduction
- 2 Main Results
- Seffective Generation
- 4 Conclusion

Generation of Invariant Algebraic Sets

We look for p and N such that

$$\mathfrak{D}_{\mathbf{f}}^{(N)}(p) = \sum_{i=0}^{N-1} \lambda_i \mathfrak{D}_{\mathbf{f}}^{(i)}(p)$$

Generation of Invariant Algebraic Sets

We look for p and N such that

$$oxed{ \mathfrak{D}_{\mathbf{f}}^{(N)}(p) = \sum_{i=0}^{N-1} \lambda_i \mathfrak{D}_{\mathbf{f}}^{(i)}(p) }$$

Invariant Algebraic Set

Let
$$J:=\left\langle p,\ldots,\mathfrak{D}_{\mathbf{f}}^{(N-1)}(p)\right
angle$$
, then
$$\partial J=J\subset I(V(J))\ .$$

By Corollary1, V(J) is invariant.

First Integrals vs. Limit Cycles

Case 1: Polynomial First Integral

The ideal J is parametrized by \mathbf{x}_0 .

For all
$$\mathbf{x}_0 \in \mathbb{R}^n$$
, $p(\mathbf{x}_0) = 0 \wedge \cdots \wedge \mathfrak{D}_{\mathbf{f}}^{(N-1)}(p)(\mathbf{x}_0) = 0$

First Integrals vs. Limit Cycles

Case 1: Polynomial First Integral

The ideal J is parametrized by \mathbf{x}_0 .

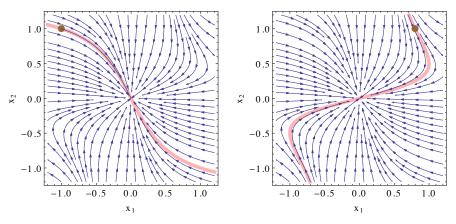
For all
$$\mathbf{x}_0 \in \mathbb{R}^n$$
, $p(\mathbf{x}_0) = 0 \wedge \cdots \wedge \mathfrak{D}_{\mathbf{f}}^{(N-1)}(p)(\mathbf{x}_0) = 0$

Case 2: Local Invariant Regions (e.g. limit cycle, equilibria)

Restrict \mathbf{x}_0 to J, that is

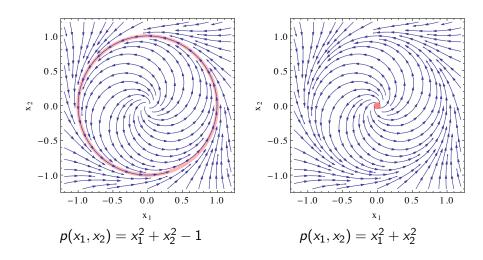
$$p(\mathbf{x}_0) = 0 \wedge \cdots \wedge \mathfrak{D}_{\mathbf{f}}^{(N-1)}(p)(\mathbf{x}_0) = 0$$

Example: First Integrals



$$p_{(x_1(0),x_2(0))}(x_1,x_2) = (x_2(0)-x_1(0)x_2(0)^2)x_1 - x_1(0)(x_2 - x_1x_2^2)$$

Example: Local invariant regions



Matrix Representation: Intuition

Suppose we have a 2-dimensional ODE $(\dot{x}_1,\dot{x}_2)=(x_1,x_2)$

Matrix Representation: Intuition

Suppose we have a 2-dimensional ODE
$$(\dot{x}_1,\dot{x}_2)=(x_1,x_2)$$

• Start with parametric p of degree 1: $p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$

Suppose we have a 2-dimensional ODE $(\dot{x}_1, \dot{x}_2) = (x_1, x_2)$

- **9** Start with parametric p of degree 1: $p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$
- ② Start with N=1

Suppose we have a 2-dimensional ODE $(\dot{x}_1,\dot{x}_2)=(x_1,x_2)$

- **9** Start with parametric p of degree 1: $p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$
- ② Start with N=1
- **3** Find $\beta \in \mathbb{R}$ such that: $\mathfrak{D}_{\mathbf{f}}(p) = \beta p$

Suppose we have a 2-dimensional ODE $(\dot{x}_1,\dot{x}_2)=(x_1,x_2)$

- **9** Start with parametric p of degree 1: $p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$
- ② Start with N=1
- **3** Find $\beta \in \mathbb{R}$ such that: $\mathfrak{D}_{\mathbf{f}}(p) = \beta p$

$$\mathfrak{D}_{\mathbf{f}}(p) = \alpha_1 x_1 + \alpha_2 x_2 = \beta(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3)$$

Suppose we have a 2-dimensional ODE $(\dot{x}_1, \dot{x}_2) = (x_1, x_2)$

- Start with parametric p of degree 1: $p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$
- \bigcirc Start with N=1
- **3** Find $\beta \in \mathbb{R}$ such that: $\mathfrak{D}_{\mathbf{f}}(p) = \beta p$

$$\mathfrak{D}_{\mathbf{f}}(p) = \alpha_1 x_1 + \alpha_2 x_2 = \beta(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3)$$

$$\begin{array}{lll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

Suppose we have a 2-dimensional ODE $(\dot{x}_1, \dot{x}_2) = (x_1, x_2)$

- ① Start with parametric p of degree 1: $p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$
- \bigcirc Start with N=1
- **3** Find $\beta \in \mathbb{R}$ such that: $\mathfrak{D}_{\mathbf{f}}(p) = \beta p$

$$\mathfrak{D}_{\mathbf{f}}(p) = \alpha_1 x_1 + \alpha_2 x_2 = \beta(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3)$$

$$\begin{array}{llll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

$$p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$$

$$(-1+\beta)\alpha_1 = 0$$

$$(-1+\beta)\alpha_2 = 0 \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0\\ 0 & -1+\beta & 0\\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1\\ \alpha_2\\ \alpha_3 \end{pmatrix} = 0$$

$$(\beta)\alpha_3 = 0$$

- Max dim of ker of $M(\beta) \rightsquigarrow$ more "freedom" for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$
- Increases the chances of finding first integrals
- Dually, minimize the rank of $M(\beta)$

$$p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$$

$$= 0 \qquad \left(-1 + \beta \qquad 0 \qquad 0\right) \quad \left(\alpha_1\right)$$

$$\begin{array}{llll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

- Max dim of ker of $M(\beta) \rightsquigarrow$ more "freedom" for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$
- Increases the chances of finding first integrals
- Dually, minimize the rank of $M(\beta)$

$$\begin{array}{cccc} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

 $p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$

- Max dim of ker of $M(\beta) \rightsquigarrow$ more "freedom" for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$
- Increases the chances of finding first integrals
- Dually, minimize the rank of $M(\beta)$

$$p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$$

$$\begin{array}{cccc} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

- Max dim of ker of $M(\beta) \rightsquigarrow$ more "freedom" for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$
- Increases the chances of finding first integrals
- Dually, minimize the rank of $M(\beta) \rightsquigarrow NP$ -hard [Buss et al. 1999]

$$p = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3$$

$$\begin{array}{llll} (-1+\beta)\alpha_1 &= 0 \\ (-1+\beta)\alpha_2 &= 0 \\ (\beta)\alpha_3 &= 0 \end{array} \leftrightarrow \begin{pmatrix} -1+\beta & 0 & 0 \\ 0 & -1+\beta & 0 \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = 0$$

- Max dim of ker of $M(\beta) \rightsquigarrow$ more "freedom" for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$
- Increases the chances of finding first integrals
- Dually, minimize the rank of $M(\beta) \sim NP$ -hard [Buss et al. 1999]

$$h = x_2(0)x_1 - x_1(0)x_2$$

Toward a Generation Procedure?

We started with a parametrized polynomial p of degree 1 and $N=1\dots$

If no invariants:

- Any reasonable bound on N? [GM Socias 1992]
- Any bound on the degree of p?
- Increase order N versus increase the polynomial degree of p?

Example1

ODE

$$\dot{x_1} = -x_2$$

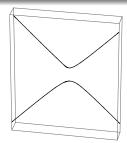
$$\dot{x_2} = x_1$$

$$\dot{x_3} = x_4^2$$

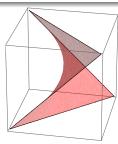
$$\dot{x_4} = x_3 x_4$$

Invariant

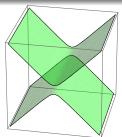
$$J = \left\langle p, \mathfrak{D}_{f}(p), \mathfrak{D}_{f}^{(2)}(p) \right\rangle = \left\langle -1 + x_{1}x_{4}, \ x_{3} - x_{2}x_{4}, \ x_{4}^{2} - x_{3}^{2} - 1 \right\rangle$$



Orbit



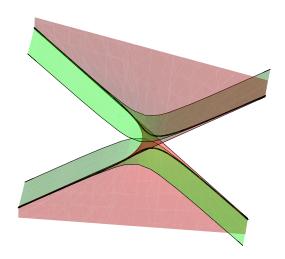
$$\mathfrak{D}_{\mathbf{f}}(p)=0$$



 $\mathfrak{D}_{\mathbf{f}}^{(2)}(p)=0$

Differential Radical Invariants

Example1: cont'd



Example2: Longitudinal Dynamics of an Airplane

6th Order Longitudinal Equations

$$\dot{u} = \frac{X}{m} - g\sin(\theta) - qw$$

$$\dot{w} = \frac{Z}{m} + g\cos(\theta) + qu$$

$$\dot{x} = \cos(\theta)u + \sin(\theta)w$$

$$\dot{z} = -\sin(\theta)u + \cos(\theta)w$$

$$\dot{q} = \frac{M}{l_{yy}}$$

$$\dot{\theta} = q$$

u: axial velocity

w : vertical velocity

x : range

z : altitude

q : pitch rate

 θ : pitch angle

Case Study: Generated Invariants

Automatically Generated Invariant Functions

$$\frac{Mz}{I_{yy}} + g\theta + \left(\frac{X}{m} - qw\right)\cos(\theta) + \left(\frac{Z}{m} + qu\right)\sin(\theta)$$

$$\frac{Mx}{I_{yy}} - \left(\frac{Z}{m} + qu\right)\cos(\theta) + \left(\frac{X}{m} - qw\right)\sin(\theta)$$

$$- q^2 + \frac{2M\theta}{I_{yy}}$$

Outline

- Introduction
- 2 Main Results
- 3 Effective Generation
- Conclusion

Related and On Going Work

Absolutely non-exhaustive (Sorry !)

- Liouville, Darboux, Poincaré, Painlevé (Qualitative Analysis)
- Lie, Vessiot, Picard (Differential Galois Theory)
- Ritt, Kolchin (Differential Algebra)
- Prelle, Singer, Ulmer, Weil, Chèze (Effective Methods)
- Basu, Roy, Collins (Real AG, QE)

On Going Work

- Better understand the link between Diff Galois Groups and Invariant Algebraic Sets
- Extensions to Non-Smooth Dynamics (Switched Systems)
- Extension to Differential Algebraic Equations (DAE)

Optional: Differential Algebra

Extension to Differential Algebraic Equations

- ∂ denotes the trivial derivation on R
- define $R\{x\}$, the ring of differential polynomials $(\partial x_i := x_i')$
- define $\partial(x'_1 f_1, \dots, x'_n f_n)$ as the differential ideal of $R\{\mathbf{x}\}$ generated by all the $x'_i f_i$
- ∂ could be extended uniquely on $R\{x\}/\partial(x'-f)$
- \bullet the extension of ∂ on the quotient ring gives an algebraic definition of the Lie derivation
- can we enumerate all differential ideals of the quotient ring?
- is it a simple differential ring? (no invariant algebraic sets)