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» Linear Complementarity Problem (LCP) An NP-complete QE Problem

q ∈ Rn, M ∈ Rn×n, LCP(q,M) is the following sentence

∃w, z ∈ Rn,
w = q+Mz
0 ≤ w ⊥ z ≥ 0

∗ Linear and quadratic Programming
∗ Several applications in engineering, economics etc.
∗ The LCP Book by Cottle, Pang and Stone (1992)
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» Linear Complementarity

0 ≤ w ⊥ z ≥ 0

if and only if

w ≥ 0 ∧ z ≥ 0 ∧w.z = 0

if and only if

∀i, wi ≥ 0 ∧ zi ≥ 0 ∧wizi = 0
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» Related classes of Matrices
M is a Q-matrix: there exists a solution for all q.

∀q ∈ Rn, ∃w, z ∈ Rn,
w = q+Mz
0 ≤ z ⊥ w ≥ 0

M is an S-matrix: there exists a partial solution for all q.

∀q ∈ Rn, ∃w, z ∈ Rn,
w = q+Mz
z,w ≥ 0

M is a P-matrix: there exists unique solution for all q.

∀q ∈ Rn, ∃!w, z ∈ Rn,
w = q+Mz
0 ≤ z ⊥ w ≥ 0
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» Feasibility, Solvability, Partitioning
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» State of affairs somehow unsatisfactory...

578 J Glob Optim (2010) 46:571–580

5 Matrix class inclusion map

See Fig. 1.

Fig. 1 Matrix class inclusion map. Arrows for implied inclusions are omitted

123
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» Time complexity of recognizing a Q-matrix M is fixed

Cylindrical Algebraic Decomposition (CAD)
∗ Collins (1975) (6n)2O(n)

∗ Grigor’ev (1985) (6n)O(n)8

∗ Renegar (1992) (6n)O(n2)

Specialized algorithms
∗ Gale (∼1965) 22n

∗ Naiman and Stone (1998) O(2O(n2))

∗ De. Loera and Morris (1999) 2
(
2n
n
)
∼ 2O(2

2n)
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» Complexity of characterizing Q-matrices M is symbolic

Cylindrical Algebraic Decomposition (CAD)
∗ Collins (1975) O(n)2O(n

2)

∗ Grigor’ev (1985) O(n)O(n2)8

∗ Renegar (1992) O(n)O(n4)

Specialized algorithms
∗ ...

Limited to n = 2.
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» Outline for this talk Characterizing Q-matrices forn = 3

∗ Triangulation with minimal cones
∗ An alternatives theorem
∗ Holes for n = 3

∗ Symbolic characterization for n = 3
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» Feasibility A simpler problem

w = q+Mz
0 ≤ w ⊥ z ≥ 0

⇝ q =
(
I −M

)(w
z

)
w ≥ 0 ∧ z ≥ 0 ∧w.z = 0

∗ q belongs to Γ = ⟨e1, . . . , en,−M1, . . . ,−Mn⟩
∗ Under which conditions on M, the cone Γ covers Rn?

Proposition
Let k ≥ n+ 1 and g1, . . . , gk denote k non-zero
vectors of Rn. If ⟨g1, . . . , gk⟩ = Rn then there exist
i1, . . . , im+1, 1 ≤ m ≤ n, such that ⟨i1, . . . , im+1⟩ is a
flat of dimension m.
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» Example

Suppose ⟨g1, . . . , g6⟩ = R3.
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» Triangulation Minimal cones

Γ = Rn: the space can be triangulated by minimal cones.

Proposition
Assume Γ = Rn. Then for any x ∈ Rn, there exists a
minimal cone G ∈ Cones(Γ) containing x, that is G is
full and for any other full cone G′ ∈ Cones, G′ ⊆ G
implies G′ = G.
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» Complementary Cones Σ Covering problem

w = q+Mz
0 ≤ w ⊥ z ≥ 0

⇝ q =
(
I −M

)(w
z

)
w, z ≥ 0 ∧w.z = 0

∗ C = ⟨a1, . . . , an⟩, ai ∈ {Ii,−Mi}
∗ 2n complementarity cones Ck
∗ Cones are sewed along their common facets
∗ M is a Q-matrix if all cones cover Rn, i.e.

Rn ⊆ Σ := ∪kCk
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» Examplesn = 2
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» Dyadic covering Alternatives

Proposition
The cone ⟨ei,−Mi⟩ cannot be partially covered, i.e.,
either ⟨ei,−Mi⟩ ⊆ Σ or ⟨ei,−Mi⟩◦ ⊆ Σc.

Proposition
The cone ⟨ei,−Mi⟩ is covered if and only if one of
the following intersections occur

e1
−M1

a2

a3
e1

M1

a2

a3
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» Holes n = 3

Definition (Surrounding)
A vector q is surrounded if it has a covered
neighborhood. (U ⊆ Σ.)
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» Local Characterization
Theorem
R3 ⊆ Σ if and only if, for all i, both ai and a′i are
surrounded.
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» Local Characterization (bis) Symbolic Computation

Theorem
Assume R3 ⊆ Γ. R3 = Σ if and only if, for each i,
either ai is self surrounded or lazily covered.

∗ Self surrounding is equivalent to Q-covering
∗ Lazy covering is a cone membership
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» Q-matrices forn = 2

Theorem
The matrix

(m1 m2m3 m4

)
is a Q-matrix if and only if

(m1 > 0 ∧m2 ≥ 0 ∧m4 > 0)

∨(m1 > 0 ∧m3 = 0 ∧m4 > 0)

∨(m1 = 0 ∧m2 > 0 ∧m3 < 0 ∧m4 > 0)

∨(m1 < 0 ∧m2 > 0 ∧m3 < 0 ∧ 0 > m1m4 > m2m3)

∨(m1 < 0 ∧m2 > 0 ∧m3 > 0 ∧m2m3 > m1m4 > 0)

∨(m1 > 0 ∧m2 < 0 ∧m3 < 0 ∧m1m4 > m2m3)

∨(m1 > 0 ∧m2 < 0 ∧m3 > 0 ∧m1m4 > m2m3)

Theorem
The matrix

(m1 m2m3 m4

)
is a P-matrix if and only if

m1 > 0 ∧m4 > 0 ∧m1m4 > m2m3 .
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» Q-matrices forn = 3

∗ Input data: 440 Bytes
∗ Characterization: 664 792 Bytes (∼ 0.7MB)
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» Neat examples

Example (non-flat and non-pointed cones)2 1 −1
4 0 −1
3 0 −1



Example (degree±2) −1 2 2
1 −1 2
1 2 −1
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» Ongoing/Future work

∗ Can we push the used toolbox for n ≥ 4?
∗ Is there a way to count holes? (Homology)

Thanks for attending!
More details available here

https://arxiv.org/abs/2203.12333
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