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» (Autonomous) Ordinary Differential Equations

Consider the system

x′1 = f1(x1, . . . , xn) ,
...

x′n = fn(x1, . . . , xn)

∗ x′i stands for dxi
dt

∗ fi : Rn → R continuous functions
∗ f := (f1, . . . , fn) define a vector field over Rn

∗ x := (x1, . . . , xn)
∗ the entire system is denoted by x′ = f(x)
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» Initial Value Problem

Assume that solutions always exist (at least locally)
and are unique (e.g. local Lipschitz continuity of f is
sufficient to guarantee this property).

∗ Let φ(·, x) denote the solution to x′ = f(x) for some x ∈ Rn

∗ φ(·, x) is defined over Ix
∗ Ix is an open interval containing zero
∗ Ix is called the maximal interval of existence (for x)
∗ t > 0 (resp. t ≥ 0) denotes Ix ∩ (0,+∞) (resp.
Ix ∩ [0,+∞))
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» Positively Invariant Sets

Given system of ODEs x′ = f(x), a set S ⊆ Rn is positively
invariant if and only if no solution starting inside S can leave
S in the future, i.e.

∀ x ∈ S. ∀ t ≥ 0. φ(t, x) ∈ S .
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» Droplet Is it positively invariant?
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» Intuition Nagumo’s theorem

A closed set S ⊆ Rn is positively invariant for f if and only if:

The Nagumo Theorem (informally)

At each point on the boundary of S, the vector field
f “points into the interior of S or is tangent to S”.

∗ M. Nagumo (1942) [in German]

∗ J. Yorke (1967),
∗ J-M. Bony (1969) [in French],
∗ H. Brezis (1970),
∗ P. Hartman, M. Crandall, R. Redheffer (1972)
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» Smooth sub-level sets Nagumo’s theorem

Suppose
∗ g is continuously differentiable, and
∗ ∇g(x) ̸= 0 for all x satisfying g(x) = 0

Then the sub-level set {x | g(x) ≤ 0} is positively invariant iff:

∀ x. (g(x) = 0⇒ ∇g · f(x) ≤ 0)

g(x) ≤ 0

x

f(x)

∇g(x)
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» Beyond Practical Sets

∗ Important in control and engineering (Blanchini and
Miani 2010)
∗ Formal verification using interactive and automated
theorem proving (more recent)

∗ S might not be closed (nor open)
∗ S is often encoded as a semi-algebraic set
∗ The boundary of S might not be smooth

[7/38]
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» Induction over non-negative reals

A predicate P(t) holds true for all t ≥ 0 if and only if:
1. P(0),
2. ∀ t ≥ 0. ¬P(t)→ ∃ ε > 0. ∀ T ∈ (t, t− ε). ¬P(T),
3. ∀ t ≥ 0. P(t)→ ∃ ε > 0. ∀ T ∈ (t, t+ ε). P(T).

Proof.
“if” Consider (for contradiction) the time t∗ = inf{t ≥ 0 | ¬P(t)}.
By 1. and 3. we have that t∗ ̸= 0, so t∗ must be positive, but in this
case P(t) holds for all t ∈ [0, t∗) (by definition). If P(t∗), then t∗ cannot
be an infimum (by 3.), and if ¬P(t∗) then (by 2.) we have that ¬P(t)
holds for all t ∈ (t∗ − ε, t∗) for some ε > 0; a contradiction.
“only if” is obvious.

[8/38]
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» Induction over non-negative reals
A predicate P(t) holds true for all t ≥ 0 if and only if:

1. P(0),
2. ∀ t ≥ 0. ¬P(t)→ ∃ ε > 0. ∀ T ∈ (t, t− ε). ¬P(T),
3. ∀ t ≥ 0. P(t)→ ∃ ε > 0. ∀ T ∈ (t, t+ ε). P(T).

Condition 2. can be replaced by a weaker condition

∀ t > 0. ¬P(t)→ ∃ T ∈ [0, t). ¬P(T) ,

or its contrapositive form

∀ t > 0. P(t)←
(
∀ T ∈ [0, t). P(T)

)
.

Pete L. Clark, The Instructor’s Guide to Real Induction,Mathematics Magazine
92(2), 2019.
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» In Sets Definition

Let S ⊆ Rn. The Inf set of S is defined as

Inf(S)
def
= {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). φ(t, x) ∈ S}

Inf(S) is the set of states, not necessarily in S, from which the
system will evolve inside S for some non-trivial time interval
“immediately in the future”.
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» Constructions

1. Reversing the flow

In−f(S) = {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). φ(−t, x) ∈ S}

2. Complementing

Inf(S)c = {x ∈ Rn | ∀ ε > 0. ∃ t ∈ (0, ε). φ(t, x) ̸∈ S}

3. In set of the complement

Inf(Sc) = {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). φ(t, x) ̸∈ S}

Thus, Inf(Sc) ⊆ Inf(S)c (the converse doesn’t hold in general).

[11/38]
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» Characterizing positively invariant sets via real induction

Theorem (Liu et al. 2011)

A set S ⊆ Rn is positively invariant under the flow
of the system x′ = f(x) if and only if

S ⊆ Inf(S) and Sc ⊆ In−f(Sc) .

Proof.

Take “φ(t, x) ∈ S” as the predicate P(t).
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» Distributive properties

Inf(S1 ∩ S2) = Inf(S1) ∩ Inf(S2)

Inf(S1 ∪ S2) ⊇ Inf(S1) ∪ Inf(S2)

Counterexample

x′ = 1 and S =
{
x ∈ R | x ≤ 0 ∨

(
x > 0 ∧ sin

(
x−1

)
= 0

)}
.

∗ 0 ̸∈ Inf(S)
∗ Therefore 0 ∈ Inf(S)c

∗ 0 ̸∈ Inf(Sc)
Thus: Inf(S ∪ Sc) = Inf(Rn) = Rn ̸= Inf(S) ∪ Inf(Sc).

[13/38]
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» LZZ Decision procedure

Checking problem

Given a semi-algebraic set S and a polynomial
vector field f, check whether S is positively
invariant for f.

1. Construct Inf(S)
2. Construct In−f(Sc) (using the reversed flow −f).
3. Check the semi-algebraic set inclusions S ⊆ Inf(S) and

Sc ⊆ In−f(Sc) using e.g. the CAD algorithm (Collins and
Hong 1991).

In practice, checking the inclusions “never” terminates!

[14/38]
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» Exit sets

Exit Set (Conley 78)

The exit set of S ⊆ Rn with respect to the local flow
induced by x′ = f(x) is defined as follows:

Exitf(S)
def
= {x ∈ S | ∀ t > 0. ∃ s ∈ (0, t). φ(s, x) ̸∈ S} .

Exitf(S) is the set of points in S from which the flow leaves S
“immediately in the futur”.

∗ Exitf(S) and Exit−f(S) are not necessarily disjoint
∗ neither do they cover the intersection S ∩ ∂S

[15/38]
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» Constructions

1. Reversing the flow

Exit−f(S) = {x ∈ S | ∀ t > 0. ∃ s ∈ (0, t). φ(−s, x) ̸∈ S}

2. Complementing

Exitf(S)c = Sc ∪ {x ∈ S | ∃ t > 0. ∀ s ∈ (0, t). φ(s, x) ∈ S}

3. Exit set of the complement

Exitf(Sc) = {x ∈ Sc | ∀ t > 0. ∃ s ∈ (0, t). φ(s, x) ∈ S}

[16/38]
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» Characterizing positively invariant sets via exit sets

A set S ⊆ Rn is positively invariant if and only if
both Exitf(S) and Exit−f(Sc) are empty.

Proof.

For any set S ⊆ Rn, Exitf(S) = Inf(S)c ∩ S.

∅ = Inf(S)c ∩ S︸ ︷︷ ︸
Exitf(S)

⇐⇒ S ⊆ Inf(S) ,

∅ = In−f(Sc)c ∩ Sc︸ ︷︷ ︸
Exit−f(Sc)

⇐⇒ Sc ⊆ In−f(Sc) .

[17/38]
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» Distributive properties

Exitf(S1 ∩ S2) = (Exitf(S1) ∩ S2) ∪ (S1 ∩ Exitf(S2))

Exitf(S1∪S2) ⊆
(
Exitf(S1)∩ Inf(S2)c

)
∪
(
Inf(S1)c∩Exitf(S2)

)

Counterexample

x′ = 1 and the sets

S1 = {0} ∪
{
x ∈ R | x > 0 ∧ sin

(
x−1) = 0

}
,

S2 = {0} ∪
{
x ∈ R | x > 0 ∧ sin

(
x−1) ̸= 0

}
.

∗ 0 ∈ Exitf(S1) and 0 ∈ Exitf(S2)

∗ 0 ̸∈ Inf(S1) and 0 ̸∈ Inf(S2)

∗ 0 ̸∈ Exitf(S1 ∪ S2) (x ≥ 0 is a positively invariant set)

[18/38]
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» Decision procedure Coarse granularity

Checking problem

Given a semi-algebraic set S and a polynomial
vector field f, check whether S is positively
invariant for f.

1. Construct Exitf(S)
2. Construct Exit−f(Sc) (using the reversed flow −f).
3. Check the emptiness of Exitf(S) and Exit−f(Sc) using e.g.

the CAD algorithm (Collins and Hong 1991).

But then we hit the same wall!

[19/38]
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» Decomposition to basic semi-algebraic sets Fine granularity

∗ S semi-algebraic set encoded in a normal form∧k
i=1

∨mi
j=1(pij ▷◁ij 0) (CNF)

∗ pij ∈ R[x1, . . . , xn]
∗ m = maximi
∗ d = maxi,j deg(pij)
∗ ρ = maxi,j ordf(pij)

Then Exitf(S) ∨ Exit−f(¬S) is a union of at most kρmk(ρ+ 1)k−1

basic semi-algebraic sets

q1 ▷◁1 0 ∧ . . . ∧ qs ▷◁s 0 ,

where s ≤ m− 1 + k(ρ+ 1) and deg(qj) ≤ d+ ρ(deg(f)− 1).

[20/38]
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» Recursive procedure Divide and conquer

Let S and R be two semi-algebraic sets. We define
NonEmptyf(S,R) recursively on the Boolean structure
of S:
NonEmptyf(S,R) returns False if and only if Exitf(S) ∩ R
is empty.

NonEmptyf(A, R) := Reduce (∃x1. . . . ∃xn. Exitf(A) ∧ R) ,
NonEmptyf(S1 ∧ S2, R) := NonEmptyf(S1, S2 ∧ R)

∨ NonEmptyf(S2, S1 ∧ R) ,
NonEmptyf(S1 ∨ S2, R) := NonEmptyf(S1,¬Inf(S2) ∧ R)

∨ NonEmptyf(S2, ¬Inf(S1) ∧ R) ,
NonEmptyf(¬S, R) := NonEmptyf(Neg(S), R) .

[21/38]
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» ESE decision procedure

Theorem

A semi-algebraic set S is positively invariant for a
system of polynomial ODEs x′ = f(x) if and only if

¬
(
NonEmptyf(S, T) ∨ NonEmpty−f(¬S, T)

)
.

Trade-ff

ESE proposes a natural trade-off between the fine
and coarse granularities suggested by the Boolean
structure of the candidate S.

[22/38]
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» Complexity analysis Normal forms

∗ S in in disjunctive normal form (DNF) ∨k
i=1

∧mi
j=1 Aij

∗ Aij are atomic formulas
∗ m = maximi

∗ The recursion depth of NonEmptyf(S, T) is bounded by k+m
∗ The number of calls to Reduce is ∑k

i=1mi ≤ km
∗ Each call has the form Reduce∃x1 . . . ∃xn.Exitf(Ars) ∧ Rrs,
where

Rrs ≡
mr∧

j=1,j̸=s
Arj ∧ ¬Inf

 k∨
i=1,i̸=s

mi∧
j=1

Aij

 .

A similar statement holds for conjunctive normal forms
(CNF).

[23/38]
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» DNF example

S ≡ (A11 ∧ A12) ∨ A21 ∨ A31 (k = 3, m = m1 = 2, m2 = m3 = 1).

The procedure NonEmptyf(S, T) calls Reduce 4 times:

Reduce ∃x1 . . . ∃xn. Exitf(A11) ∧ A12 ∧ ¬Inf(A21 ∨ A31)

Reduce ∃x1 . . . ∃xn. Exitf(A12) ∧ A11 ∧ ¬Inf(A21 ∨ A31)

Reduce ∃x1 . . . ∃xn. Exitf(A21) ∧ ¬Inf((A11 ∧ A12) ∨ A31)

Reduce ∃x1 . . . ∃xn. Exitf(A31) ∧ ¬Inf((A11 ∧ A12) ∨ A21)

[24/38]
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» The droplet ...
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» ... is leaking!
ESE took 0.3s to prove falsity while LZZ gave no answer (> 4h)
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» Maltese cross semi-linear invariant
ESE proved invariance in 164s while LZZ gave no answer (> 4h)
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» Semi-algebraic invariant
ESE proved invariance in 7 sec. and LZZ in 30 min.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

[28/38]



Positively Invariant Sets Real Induction Exit Sets Examples Computation Details

» Ongoing/Future work

∗ Experiment with RAGLib
∗ What is the best encoding for S?
∗ What are the topological spaces for which

Inf(S1 ∪ S2) = Inf(S1) ∪ Inf(S2)?

Thanks for attending!
More details available here

https://arxiv.org/abs/2009.09797

[29/38]
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» In set of equalities g = 0

Let g be (real) analytic.

g′ =
n∑
i=1

∂g
∂xi

fi = ∇g · f

g(φ(t, x)) = g(x) + g′(x)t+ g′′(x)t
2

2!
+ · · ·

Inf(g = 0) ≡ g = 0 ∩ g′ = 0 ∩ g′′ = 0 ∩ g′′′ = 0 ∩ · · ·

which can be described by an “infinite formula”:

“ Inf(g = 0) ≡ g = 0 ∧ g′ = 0 ∧ g′′ = 0 ∧ g′′′ = 0 ∧ · · · ”.

[30/38]
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» In set of inequalities g < 0

g(φ(t, x)) = g(x) + g′(x)t+ g′′(x)t
2

2!
+ · · ·

The situation with inequalities g < 0 is similar:
“ Inf(g < 0) ≡ g < 0

∨ (g = 0 ∧ g′ < 0)

∨ (g = 0 ∧ g′ = 0 ∧ g′′ < 0)

∨ (g = 0 ∧ g′ = 0 ∧ g′′ = 0 ∧ g′′′ < 0)

...
”

What happens when g and f are polynomials?

[31/38]
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» Ascending chain condition

∗ R[x1, . . . , xn] is Noetherian (Hilbert basis theorem)
∗ Assuming a polynomial vector field fi ∈ R[x1, . . . , xn]

Let p ∈ R[x1, . . . , xn], then the ascending chain of ideals

⟨p⟩ ⊆ ⟨p,p′⟩ ⊆ ⟨p,p′,p′′⟩ ⊆ · · ·

is finite, i.e. there exists a k ∈ N such that
⟨p,p′, . . . ,p(k)⟩ = ⟨p,p′, . . . ,p(K)⟩ for all K ≥ k.

∗ k is the order of p w.r.t. to f, denoted ordf(p)
∗ ordf(p) is computable using Gröbner bases

[32/38]
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» Ascending chain condition
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» In set of polynomial equalities
Let g be (real) analytic.

g′ =
n∑
i=1

∂g
∂xi

fi = ∇g · f

g(φ(t, x)) = g(x) + g′(x)t+ g′′(x)t
2

2!
+ · · ·

Inf(g = 0) ≡ g = 0 ∩ g′ = 0 ∩ g′′ = 0 ∩ g′′′ = 0 ∩ · · ·

which can be described by an “infinite formula”:

“ Inf(g = 0) ≡ g = 0 ∧ g′ = 0 ∧ g′′ = 0 ∧ g′′′ = 0 ∧ · · · ”.
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» In set of polynomial inequalities

g(φ(t, x)) = g(x) + g′(x)t+ g′′(x)t
2

2!
+ · · ·

The situation with inequalities g < 0 is similar:

“ Inf(g < 0) ≡ g < 0

∨ (g = 0 ∧ g′ < 0)

∨ (g = 0 ∧ g′ = 0 ∧ g′′ < 0)

∨ (g = 0 ∧ g′ = 0 ∧ g′′ = 0 ∧ g′′′ < 0)

...
”
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» Semi-algebraic sets

Inf(S1 ∩ S2) = Inf(S1) ∩ Inf(S2)

Inf(S1 ∪ S2) ⊇ Inf(S1) ∪ Inf(S2)

Counterexample

x′ = 1 and S =
{
x ∈ R | x ≤ 0 ∨

(
x > 0 ∧ sin

(
x−1

)
= 0

)}
.

∗ 0 ̸∈ Inf(S)
∗ Therefore 0 ∈ Inf(S)c

∗ 0 ̸∈ Inf(Sc)
Thus: Inf(S ∪ Sc) = Inf(Rn) = Rn ̸= Inf(S) ∪ Inf(Sc).
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» In set of semi-algebraic sets

S ≡
l∨

i=1

 mi∧
j=1

pij < 0 ∧
Mi∧

j=mi+1

pij = 0



Inf(S) ≡
l∨

i=1

 mi∧
j=1

Inf(pij < 0) ∧
Mi∧

j=mi+1

Inf(pij = 0)


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» Exit set of polynomial equalities

Exitf(p = 0) ≡
(
p = 0 ∧ p′ ̸= 0

∨ p = 0 ∧ p′ = 0 ∧ p′′ ̸= 0

...
∨ p = 0 ∧ p′ = 0 ∧ p′′ = 0 ∧ · · · ∧ p(ordf(p)) ̸= 0

)
.

The exit set of open sets is empty. In particular

Exitf(p < 0) ≡ F
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» Decomposition in basic semi-algebraic sets

∗ Let pi, 1 ≤ i ≤ m
∗ Let qj, 1 ≤ j ≤ k
∗ Let ρ denotes the maximum order w.r.t. f

Exitf(p1 ▷◁1 0) ∧
m∧
i=2

(pi ▷◁i 0) ∧
k∧

j=1

Inf
(
qj ▷◁j 0

)
is the union of at most ρ(r+ 1)k basic semi-algebraic sets.
Each of which is a conjunction of at most
m− 1 + (k+ 1)(ρ+ 1) expression of the form p ▷◁ 0.
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