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Positively Invariant Sets



» (Autonomous) Ordinary Differential Equations

Consider the system

X, stands for %t

fi : R" — R continuous functions
f:=(f,...,f,) define a over R"
X:= (X1,...,Xn)

the entire system is denoted by x' = f(x)

[1/38]



» Initial Value Problem

Assume that solutions always exist (at least locally)
and are unique (e.g. local Lipschitz continuity of fis
sufficient to guarantee this property).

Let (-, x) denote the solution to ¥ = f(x) for some x € R"
©(+, x) is defined over I,

I, is an open interval containing zero

I, is called the (for x)

t > 0 (resp. t > 0) denotes I, N (0, +00) (resp.
Iyn'[0,+00))
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» Positively Invariant Sets

Given system of ODEs X' = f(x), aset SC R" is
if and only if no solution starting inside S can leave
Sin the future, i.e.

VxeS Vt>0. ¢(tx) eS.
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» Intuition Nagumos theorem

A closed set S C R" is positively invariant for fif and only if:

At each point on the boundary of S, the vector field
f “points into the interior of S or is tangent to S”.

M. Nagumo (1942) [in German]

J. Yorke (1967),

J-M. Bony (1969) [in French],

H. Brezis (1970),

P. Hartman, M. Crandall, R. Redheffer (1972)
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» Smooth sub-level sets Nagumos theorem
Suppose

g is continuously differentiable, and

Vg(x) # 0 for all x satisfying g(x) = 0

Then the sub-level set {x | g(x) < 0} is positively invariant iff:

Vx. (g(x) =0= Vg-f(x) <0)
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» Beyond Practical Sets

Important in control and engineering (Blanchini and
Miani 2010)

Formal verification using interactive and automated
theorem proving (more recent)

S might not be closed (nor open)
Sis often encoded as a semi-algebraic set
The boundary of S might not be smooth
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Real Induction



» Induction over non-negative reals

A predicate P(t) holds true for all t > 0 if and only if:
P(0),
Vt>0.-P(t) > 3e>0.YTe (tt—e) -PT),
Vt>0.P(t) >3e>0.VTe (tt+e). P(T).
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» Induction over non-negative reals

A predicate P(t) holds true for all t > 0 if and only if:
P(0),
Vt>0.-P(t) > 3e>0.YTe (tt—e) -PT),
Vt>0.P(t) >3e>0.VTe (tt+e). P(T).

“if” Consider (for contradiction) the time ¢, = inf{t > 0 | =P(t)}.

By 1. and 3. we have that t. # 0, so t,. must be positive, but in this
case P(t) holds for all ¢ € [0, t..) (by definition). If P(¢.), then t. cannot
be an infimum (by 3.), and if —P(t,) then (by 2.) we have that —P(t)
holds for all t € (¢, — ¢, t.) for some € > 0; a contradiction.

“only if” is obvious.
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» Induction over non-negative reals

A predicate P(t) holds true for all t > 0 if and only if:
P(0),
Vt>0.-P(t) >3e>0.VTe (t,t—e). -P(T),
Vt>0.P(t)—»3e>0.VTe (tt+e). PT).

Condition 2. can be replaced by a weaker condition
Vt>0.-P(t) >3 Tel0,t). -P(T),

or its contrapositive form

Vit>0.Pt)+ (VTe0,t).PT)).

Pete L. Clark, The Instructor’s Guide to Real Induction, Mathematics Magazine
92(2), 2019.
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» InSets Definition

Let SC R". The of Sis defined as

def

Ne(S) = {x€R"|Je>0.Vte (0,¢). p(tx) € S}

Ing(S) is the set of states, not necessarily in S, from which the
system will evolve inside S for some non-trivial time interval
“immediately in the future”.
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» Constructions

Reversing the flow
In_f(S)={xeR"|Je>0.Vte (0,¢). p(—t,x) € S}
Complementing
Ne(S) ={xeR"|Ve>0.3te (0,¢e). o(t,x) & S}
In set of the complement

NH(S) ={xeR"|Te>0.Vte (0,e). o(t,x) &€ S}
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» Constructions

Reversing the flow
In_f(S)={xeR"|Je>0.Vte (0,¢). p(—t,x) € S}
Complementing
Ne(S) ={xeR"|Ve>0.3te (0,¢e). o(t,x) & S}
In set of the complement

NH(S) ={xeR"|Te>0.Vte (0,e). o(t,x) &€ S}

Thus, INAS¢) C InAS)¢ (the converse doesn’t hold in general).
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» Characterizing positively invariant sets via real induction

Theorem (Liu et al. 2011)

A set S C R" is positively invariant under the flow
of the system ¥ = f(x) if and only if

SCIn(S) and S CIn_g(S°).

Take “p(t, x) € S” as the predicate P(t).
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Real Induction
000000@00000000

» Distributive properties

\nf(Sl N 52) = |ﬂf($1) N |ﬂf($2)

INA(S1 U S2) 2 Ine(S1) UINg(S2)
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» Distributive properties

INA(S1N S2) =1Ine(S1) N INA(S2)

\nf(Sl U 52) D) |ﬂf(51) U |ﬂf($2)

Counterexample

X¥=1landS={xeR|x<0V (x>0Asn(x")=0)}.
0 & Ing(S)
Therefore 0 € InA(S)¢
0 ¢ Ing(S°)

Thus: INf(SU S°) = Ing(R") = R" £ ng(S) U Ine(S°).
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» Inset of equalities
Let g be analytic.

n 89
d= :E:: 2§;Q;f} =Vg-f
i=1

glp(t,x)) +dW)t+4g"(x)
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» Inset of equalities
Let g be analytic.

n 89
d= :E:: 2§;Q;f} =Vg-f
i=1

glp(t,x)) +dW)t+4g"(x)

h(g=0) = g=0ng=0ng'=0ng”"=0n---
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» Inset of equalities
Let g be analytic.

g = Zagf vg-f
g(p(t,x)) +gx)t+g"(x)
h(g=0) = g=0ng=0ng'=0ng”"=0n---

which can be described by an “infinite formula”:

“ N(g=0) = g=0Ag=0Ag =0Ag"=0A--- .

[14/38]



» Inset of inequalities

The situation with inequalities g < 0 is similar:

113

g(p(t,x))

2

Inf(lg < 0)

V
V
Vv

x)+dx)t+g"(x)
g<o0
(g=01g<0)

(g=0Ag=0Ag<D0)
(g=0Ag=0Ag=0AG <0)

[15/38]



» Inset of inequalities

9(e(tx)) = g(x) + g (Xt + g"(x) +-~

The situation with inequalities g < 0 is similar:

113

n(g<0) = g<0
V (g=0Ag<0)
V (g=0Ag=0Ag<0)
V(g=0Ag=0Ag=0Ag <0)

What happens when g and f are polynomials?

[15/38]



» Ascending chain condition

R[x1, ..., xn] is Noetherian (Hilbert basis theorem)
Assuming a polynomial vector field f; € R[xy, ..., X,]
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» Ascending chain condition

R[x1, ..., xn] is Noetherian (Hilbert basis theorem)
Assuming a polynomial vector field f; € R[xy, ..., X,]

Let p € R[xy, . .., Xpn], then the ascending chain of ideals

<p> g <pa p,> g <p7p/7p/,> g T

is finite, i.e. there exists a k € N such that
p.p,....p") = (p,p,....p%) forall K> k.
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» Ascending chain condition

R[x1, ..., xn] is Noetherian (Hilbert basis theorem)
Assuming a polynomial vector field f; € R[xy, ..., X,]

Let p € R[xy, . .., Xpn], then the ascending chain of ideals

<p> g <pa p,> g <p7p/7p/,> g T

is finite, i.e. there exists a k € N such that
p.p,....p") = (p,p,....p%) forall K> k.

kis the of pw.r.t. to f, denoted ord¢(p)
ordg(p) is computable using Grobner bases

[16/38]



» Inset of polynomial equalities
Let g be analytic.

n ag
jzzafxifiZVg'f
i=1

9(p(t, X)) x)+gx)t+g"(x)

n(g=0) = g=0ng=0ng'=0ng"=0n---

which can be described by an “infinite formula”:

“ hfg=0) = g=0Ag=0Ag"=0Ag"=0A--- "
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» Inset of polynomial inequalities

glep(t, X)) +gd(Nt+9g"'(x)

The situation with inequalities g < 0 is similar:

[13

n(g<0) = g<0
V (g=0Ag<0)
V (g=0Ag=0Ag<0)
V(g=0Ag=0Ag=0AF <0)
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» Semi-algebraic sets

INA(S1N S2) =1Ine(S1) N INA(S2)

\nf(Sl U 52) D) |ﬂf(51) U |ﬂf($2)

X¥=1landS={xeR|x<0V (x>0Asn(x")=0)}.
0 & Ing(S)
Therefore 0 € InA(S)¢
0 & ng(S°)

Thus: INf(SU S°) = Ing(R") = R" £ ng(S) U Ine(S°).
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» In set of semi-algebraic sets

S=

/
=

1

m; M;
(//\ py<0n A PUO)
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» LZZ Decision procedure

Given a semi-algebraic set S and a polynomial
vector field f, check whether S is positively
invariant for f.

Construct InAS)
Construct In_gS¢) (using the reversed flow —f).

Check the semi-algebraic set inclusions S C In4S) and
S€ C In_g(S°) using e.g. the CAD algorithm (Collins and
Hong 1991).

[21/38]



» LZZ Decision procedure

Given a semi-algebraic set S and a polynomial
vector field f, check whether S is positively
invariant for f.

Construct InAS)
Construct In_gS¢) (using the reversed flow —f).

Check the semi-algebraic set inclusions S C In4S) and
S€ C In_g(S°) using e.g. the CAD algorithm (Collins and
Hong 1991).

In practice, checking the inclusions never terminates!

[21/38]



Exit Sets



» Exit sets

The of S C R” with respect to the local flow
induced by ¥ = f(x) is defined as follows:

Exitd(S) £ {x € S|V ¢>0.3s€ (0,t). p(s,x) & S}.

Exitg(S) is the set of points in S from which the flow leaves S
“immediately in the futur”.

[22/38]



» Exit sets

The of S C R” with respect to the local flow
induced by ¥ = f(x) is defined as follows:

Exitd(S) £ {x € S|V ¢>0.3s€ (0,t). p(s,x) & S}.

Exitg(S) is the set of points in S from which the flow leaves S
“immediately in the futur”.

Exitd(S) and Exit_¢(S) are not necessarily disjoint
neither do they cover the intersection SN dS

[22/38]



» Constructions

Reversing the flow
EXt_A(S) ={xeS|Vt>0.3s€(0,t). o(—s,x) € S}
Complementing
Exitg(S)c=SU{xe S|It>0.Vse(0,t). p(s,x) € S}
Exit set of the complement

EXite(SE) = {x € S|V ¢t > 0. Is € (0, 1). (s, x) € S}

[23/38]



» Characterizing positively invariant sets via exit sets

A set S C R" is positively invariant if and only if
both ExitAS) and Exit_¢(S°) are empty.

For any set S C R”, Exitg(S) = Ing(S)€ N S.

D =IKS)NS <= SCIKS),
——
Exitf(S)
D =In_S)°NS < S CIn_(S°).
—_——

Exit_ f(SC)
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» Distributive properties

EXitf(Sl N SQ) = (EXitf(Sl) N Sg) U (51 N EXV[f(SQ))

Exitf(Sl USQ) - (EXitf(Sl) ﬂ|ﬂf(52)c) U (\nf(Sl)Cﬁ EXitf(SQ))
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» Distributive properties

EXitf(Sl N SQ) = (EXitf(Sl) N 52) U (51 N EXV[,C(SQ))

EXitf(Sl USQ) - (Exitf(Sl) ﬂ|ﬂf(52)c) U (\nf(Sl)Cﬁ EXitf(Sg))

X =1 and the sets
Si={0}u{xeR|x> O/\Sin(x_l) =0},
S;={0}u{xeR|x> OAsin(x*) #0} .

0 € Exitg(S1) and 0 € Exite(S2)
0 & Ing(S1) and 0 & Ing(S2)
0 & Exitf(S1 U S2) (x > 0 is a positively invariant set)

[25/38]



Exit Sets

» Exit set of polynomial equalities
Exit{(p=0)= (p=0Ap #0

Vp=0Ap =0Ap"#0

Vp:O/\p’:O/\p”:0/\.../\p(0fdf(lf’))7&())_

[26/38]



» Exit set of polynomial equalities

Exit{(p=0)= (p=0Ap #0
Vp=0Ap =0Ap"#0

\/pZO/\p/:O/\pN:O/\/\p(ordf(p))%())

The exit set of open sets is empty. In particular

Exite(p < 0) =F

[26/38]



» Decision procedure Coarse granularity

Given a semi-algebraic set S and a polynomial
vector field f, check whether S is positively
invariant for f.

Construct Exite(S)
Construct Exit_g(S¢) (using the reversed flow —f).

Check the emptiness of ExitAS) and Exit_¢(S¢) using e.g.
the CAD algorithm (Collins and Hong 1991).

[27/38]



» Decision procedure Coarse granularity

Given a semi-algebraic set S and a polynomial
vector field f, check whether S is positively
invariant for f.

Construct Exite(S)
Construct Exit_g(S¢) (using the reversed flow —f).

Check the emptiness of ExitAS) and Exit_¢(S¢) using e.g.
the CAD algorithm (Collins and Hong 1991).

But then we hit the same wall!

[27/38]



Exit Sets
0000000@0000

» Decomposition to basic semi-algebraic sets Fine granularity

+ S semi-algebraic set encoded in a normal form
AL VI (P < 0) (CNF)

+ pij € Rlxy, ..., Xxn]

* m = MaxX; m;

« d = max; j deg(py)

* p = max;j orde(py;)

Then Exitd(S) V Exit_g(—S) is a union of at most kpm*(p + 1)k-!
basic semi-algebraic sets

gi> 0N ... AGgs<s 0,

where s <m — 1+ k(p+ 1) and deg(g;) < d + p(deg(f) — 1).

[28/38]



» Recursive procedure Divide and conquer

Let S and R be two semi-algebraic sets. We define
NonEmpty((S, R) recursively on the Boolean structure
of S:

NonEmpty((S, R) returns False if and only if Exitg(S) N R
is empty.

NonEmptyg(A, R) := Reduce (3xy....3xn. EXite(A) AR) ,
NonEmptyg(S1 A Sz, R) := Nontmptyg(S1, S2 A R)

V NonEmptyg(S2, S1 A R),
NonEmpty(S1 V S, R) := NonEmpty#(S1, —InA(S2) A R)

V NonEmpty(S2, —Ing(S1) A R),
NonEmptyg(—S, R) := NonEmptyg(Neg(S), R).

[29/38]



» ES decision procedure

Theorem

A semi-algebraic set S is positively invariant for a
system of polynomial ODEs ¥’ = f(x) if and only if

— (NonEmptye(S,T) Vv NonEmpty_g(—S,T))

[30/38]



» ES decision procedure

Theorem

A semi-algebraic set S is positively invariant for a
system of polynomial ODEs ¥’ = f(x) if and only if

— (NonEmptye(S,T) Vv NonEmpty_g(—S,T))

ES proposes a natural trade-off between the fine
and coarse granularities suggested by the Boolean
structure of the candidate S.

[30/38]



» Complexity analysis Normal forms

o . . . . k m;
Sin in disjunctive normal form (DNF) V;_; A Aj
Ajj are atomic formulas
m = Max; m;

The recursion depth of Nonfmpty« S, T) is bounded by k + m
The number of calls to Reduce is S, m; < km

Each call has the form Reduce 3x; . .. Ixn.Exite(Ars) A Rps,
where

my k  m
Rys = /\ Arj/\—||ﬂf \/ /\AU
j=1j¢s i=1,is j=1

A similar statement holds for conjunctive normal forms
(CNF).
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» DNF example

S= (A11 /\A12>\/A21 V A3 (k:3, m=m; =2, m=m3g= 1)

The procedure Nonfmpty (S, T) calls Reduce 4 times:

Reduce Ix; ...
Reduce dx; ...
Reduce 3x; . ..
Reduce 3x; . ..

E
B
B
dx,

. Exite
. Exite
. Exite
. Exite

A~ N N

Al
Ai2
Azl
A3l

~— ~— ~—

A Az A —Ing(A21 V Asy)
N A1 A =Ind(Azr V Aszy)
A =Inf((A11 A A1z) V Asy)
A =Ine((A11 A Ar2) V Asr)

[32/38]



Examples



_:i:\

//é 1

33333333

=l
\\§\\::;77/



Examples
00@0000

» ... is leaRing!

ES took 0.3s to prove falsity while LZZ gave no answer (> 4h)

\
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N
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0651 N\ A\
N\

-0, \\
N
\\\ \
\
N

\\\\
\ N E\\\\ NN

-0.80 -0.75 -0.70 —-0.65 —-0.60

o
g
=)

X
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» Maltese cross semi-linear invariant
ES proved invariance in 164s while LZZ gave no answer (> 4h)

INNNRRI Ry
g\\\\\\l H .1 Iy
233\\.\\\\1 =
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» Semi-algebraic invariant

ES proved invariance in 7s and LZZ in 30mn

s
Wz

8
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» Ongoing/Future work

Experiment with RAGLib
What is the best encoding for S?

What are the topological spaces for which
\nf(Sl U 52) = \nf(Sl) U |ﬂf(52)?

Thanks for attending!

More details available here
https://arxiv.org/abs/2009.09797
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