Characterizing Positively Invariant Sets

Inductive and Topological Methods

```
by Khalil Ghorbal (Inria, Rennes, France) on October 9, 2020
```

Positively Invariant Sets

» (Autonomous) Ordinary Differential Equations

Consider the system

$$\mathbf{x}'_1 = f_1(\mathbf{x}_1, \dots, \mathbf{x}_n),$$

$$\vdots$$

$$\mathbf{x}'_n = f_n(\mathbf{x}_1, \dots, \mathbf{x}_n)$$

- * x_i' stands for $\frac{dx_i}{dt}$
- $* f_i: \mathbb{R}^n \to \mathbb{R}$ continuous functions
- * $f := (f_1, \dots, f_n)$ define a vector field over \mathbb{R}^n
- $* x := (x_1, \ldots, x_n)$
- * the entire system is denoted by x' = f(x)

» Initial Value Problem

Assume that solutions always exist (at least locally) and are unique (e.g. local Lipschitz continuity of f is sufficient to guarantee this property).

- * Let $\varphi(\cdot, x)$ denote the solution to x' = f(x) for some $x \in \mathbb{R}^n$
- $* \varphi(\cdot, x)$ is defined over I_x
- * I_{x} is an open interval containing zero
- * I_x is called the maximal interval of existence (for x)
- * t > 0 (resp. $t \ge 0$) denotes $I_x \cap (0, +\infty)$ (resp. $I_x \cap [0, +\infty)$)

» Positively Invariant Sets

Given system of ODEs x' = f(x), a set $S \subseteq \mathbb{R}^n$ is positively invariant if and only if no solution starting inside S can leave S in the future, i.e.

$$\forall x \in S. \forall t \geq 0. \varphi(t, x) \in S.$$

» Droplet

Is it positively invariant?

» Intuition

Nagumo's theorem

A closed set $S \subseteq \mathbb{R}^n$ is positively invariant for f if and only if:

At each point on the **boundary** of *S*, the vector field f "points into the interior of S or is tangent to S".

- M. Nagumo (1942) [in German]
- J. Yorke (1967),
- J-M. Bony (1969) [in French],
- H. Brezis (1970),
- * P. Hartman, M. Crandall, R. Redheffer (1972)

» Smooth sub-level sets

Nagumo's theorem

Suppose

00000000

- * *g* is continuously differentiable, and
- * $\nabla g(x) \neq 0$ for all x satisfying g(x) = 0

Then the sub-level set $\{x \mid g(x) \leq 0\}$ is positively invariant **iff**:

$$\forall x. \ (g(x) = 0 \Rightarrow \nabla g \cdot f(x) \leq 0)$$

» Beyond Practical Sets

- Important in control and engineering (Blanchini and Miani 2010)
- * Formal verification using interactive and automated theorem proving (more recent)
- * S might not be closed (nor open)
- * S is often encoded as a semi-algebraic set
- The boundary of *S* might not be smooth

Real Induction

» Induction over non-negative reals

A predicate P(t) holds true for all $t \ge 0$ if and only if:

- 1. P(0),
- 2. $\forall t \geq 0. \neg P(t) \rightarrow \exists \varepsilon > 0. \forall T \in (t, t \varepsilon). \neg P(T),$
- 3. $\forall t \geq 0. P(t) \rightarrow \exists \varepsilon > 0. \forall T \in (t, t + \varepsilon). P(T).$

» Induction over non-negative reals

A predicate P(t) holds true for all $t \ge 0$ if and only if:

- 1. P(0),
- 2. $\forall t \geq 0. \neg P(t) \rightarrow \exists \varepsilon > 0. \forall T \in (t, t \varepsilon). \neg P(T),$
- 3. $\forall t \geq 0. P(t) \rightarrow \exists \varepsilon > 0. \forall T \in (t, t + \varepsilon). P(T).$

Proof

"if" Consider (for contradiction) the time $t_*=\inf\{t\geq 0\mid \neg P(t)\}$. By 1. and 3. we have that $t_*\neq 0$, so t_* must be positive, but in this case P(t) holds for all $t\in [0,t_*)$ (by definition). If $P(t_*)$, then t_* cannot be an infimum (by 3.), and if $\neg P(t_*)$ then (by 2.) we have that $\neg P(t)$ holds for all $t\in (t_*-\varepsilon,t_*)$ for some $\varepsilon>0$; a contradiction. "only if" is obvious.

» Induction over non-negative reals

A predicate P(t) holds true for all $t \ge 0$ if and only if:

- 1. P(0),
- 2. $\forall t \geq 0. \neg P(t) \rightarrow \exists \varepsilon > 0. \forall T \in (t, t \varepsilon). \neg P(T)$,
- 3. $\forall t \geq 0. P(t) \rightarrow \exists \varepsilon > 0. \forall T \in (t, t + \varepsilon). P(T).$

Condition 2. can be replaced by a weaker condition

$$\forall t > 0. \neg P(t) \rightarrow \exists T \in [0, t). \neg P(T),$$

or its contrapositive form

$$\forall t > 0. P(t) \leftarrow (\forall T \in [0, t). P(T)).$$

Pete L. Clark, *The Instructor's Guide to Real Induction*, **Mathematics Magazine 92(2)**, 2019.

» In Sets

Definition

Let $S \subseteq \mathbb{R}^n$. The $\bigcap_f \operatorname{set}$ of S is defined as

 $\ln_f(S)$ is the set of states, not necessarily in S, from which the system will evolve inside S for some non-trivial time interval "immediately in the future".

» Constructions

1. Reversing the flow

$$\ln_{-\mathbf{f}}(\mathbf{S}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \exists \ \varepsilon > 0. \ \forall \ \mathbf{t} \in (0, \varepsilon). \ \varphi(-\mathbf{t}, \mathbf{x}) \in \mathbf{S} \}$$

2. Complementing

$$\ln_{\mathbf{f}}(\mathbf{S})^{\mathbf{c}} = \{ \mathbf{x} \in \mathbb{R}^n \mid \forall \ \varepsilon > 0. \ \exists \ \mathbf{t} \in (0, \varepsilon). \ \varphi(\mathbf{t}, \mathbf{x}) \notin \mathbf{S} \}$$

3. In set of the complement

$$\ln_{\mathbf{f}}(\mathbf{S}^{\mathbf{c}}) = \{ \mathbf{x} \in \mathbb{R}^{n} \mid \exists \ \varepsilon > 0. \ \forall \ \mathbf{t} \in (0, \varepsilon). \ \varphi(\mathbf{t}, \mathbf{x}) \notin \mathbf{S} \}$$

» Constructions

1. Reversing the flow

$$\ln_{-f}(S) = \{ x \in \mathbb{R}^n \mid \exists \ \varepsilon > 0. \ \forall \ t \in (0, \varepsilon). \ \varphi(-t, x) \in S \}$$

Complementing

$$\ln_{\mathbf{f}}(\mathbf{S})^{\mathbf{c}} = \{ \mathbf{x} \in \mathbb{R}^n \mid \forall \ \varepsilon > 0. \ \exists \ \mathbf{t} \in (0, \varepsilon). \ \varphi(\mathbf{t}, \mathbf{x}) \notin \mathbf{S} \}$$

3. In set of the complement

Thus, $\bigcap_f (S^c) \subseteq \bigcap_f (S)^c$ (the converse doesn't hold in general).

» Characterizing positively invariant sets

via real induction

A set $S \subseteq \mathbb{R}^n$ is positively invariant under the flow of the system x' = f(x) if and only if

$$S \subseteq \ln_f(S)$$
 and $S^c \subseteq \ln_{-f}(S^c)$.

Take " $\varphi(t,x) \in S$ " as the predicate P(t).

» Distributive properties

$$\ln_{\mathbf{f}}(\mathbf{S}_1 \cap \mathbf{S}_2) = \ln_{\mathbf{f}}(\mathbf{S}_1) \cap \ln_{\mathbf{f}}(\mathbf{S}_2)$$

$$\ln_{\mathbf{f}}(\mathbf{S}_1 \cup \mathbf{S}_2) \supseteq \ln_{\mathbf{f}}(\mathbf{S}_1) \cup \ln_{\mathbf{f}}(\mathbf{S}_2)$$

» Distributive properties

$$\ln_{\mathbf{f}}(\mathbf{S}_1 \cap \mathbf{S}_2) = \ln_{\mathbf{f}}(\mathbf{S}_1) \cap \ln_{\mathbf{f}}(\mathbf{S}_2)$$

$$\ln_{\mathbf{f}}(\mathbf{S}_1 \cup \mathbf{S}_2) \supseteq \ln_{\mathbf{f}}(\mathbf{S}_1) \cup \ln_{\mathbf{f}}(\mathbf{S}_2)$$

Counterexample

$$\mathbf{x}' = 1$$
 and $\mathbf{S} = \{\mathbf{x} \in \mathbb{R} \mid \mathbf{x} \le 0 \lor (\mathbf{x} > 0 \land \sin(\mathbf{x}^{-1}) = 0)\}.$

- * $0 \not\in \ln_f(S)$
- * Therefore $0 \in \ln_f(S)^c$
- * $0 \not\in \ln_f(S^c)$

Thus: $\ln_f(S \cup S^c) = \ln_f(\mathbb{R}^n) = \mathbb{R}^n \neq \ln_f(S) \cup \ln_f(S^c)$.

» In set of equalities

Let g be analytic.

$$g' = \sum_{i=1}^{n} \frac{\partial g}{\partial x_i} f_i = \nabla g \cdot f$$

$$g(\varphi(t,x)) = g(x) + g'(x)t + g''(x)\frac{t^2}{2!} + \cdots$$

» In set of equalities

Let g be analytic.

$$g' = \sum_{i=1}^{n} \frac{\partial g}{\partial x_i} f_i = \nabla g \cdot f$$

$$g(\varphi(t,x)) = g(x) + g'(x)t + g''(x)\frac{t^2}{2!} + \cdots$$

$$\ln_{\mathbf{f}}(\mathbf{g}=0) \equiv \mathbf{g}=0 \cap \mathbf{g}'=0 \cap \mathbf{g}''=0 \cap \mathbf{g}'''=0 \cap \cdots$$

» In set of equalities

Let g be analytic.

$$g' = \sum_{i=1}^{n} \frac{\partial g}{\partial x_i} f_i = \nabla g \cdot f$$

$$g(\varphi(t,x)) = g(x) + g'(x)t + g''(x)\frac{t^2}{2!} + \cdots$$

$$\ln_f(g=0) \equiv g=0 \cap g'=0 \cap g''=0 \cap g'''=0 \cap \cdots$$

which can be described by an "infinite formula":

"
$$\ln_f(g=0)$$
 \equiv $g=0 \land g'=0 \land g''=0 \land g'''=0 \land \cdots$ "

» In set of inequalities

$$g(\varphi(t,x)) = g(x) + g'(x)t + g''(x)\frac{t^2}{2!} + \cdots$$

The situation with inequalities g < 0 is similar:

"
$$| \bigcap_{\mathbf{f}} (\mathbf{g} < 0)$$
 $\equiv \mathbf{g} < 0$ $\lor (\mathbf{g} = 0 \land \dot{\mathbf{g}} < 0)$ $\lor (\mathbf{g} = 0 \land \dot{\mathbf{g}} = 0 \land \ddot{\mathbf{g}} < 0)$ $\lor (\mathbf{g} = 0 \land \dot{\mathbf{g}} = 0 \land \ddot{\mathbf{g}} = 0 \land \ddot{\mathbf{g}} < 0)$ \vdots

» In set of inequalities

$$g(\varphi(t,x)) = g(x) + g'(x)t + g''(x)\frac{t^2}{2!} + \cdots$$

The situation with inequalities g < 0 is similar:

"
$$| \bigcap_{\mathbf{f}} (\mathbf{g} < 0)$$
 $\equiv \mathbf{g} < 0$ $\lor (\mathbf{g} = 0 \land \dot{\mathbf{g}} < 0)$ $\lor (\mathbf{g} = 0 \land \dot{\mathbf{g}} = 0 \land \ddot{\mathbf{g}} < 0)$ $\lor (\mathbf{g} = 0 \land \dot{\mathbf{g}} = 0 \land \ddot{\mathbf{g}} = 0 \land \ddot{\mathbf{g}} < 0)$ \vdots

What happens when g and f are polynomials?

» Ascending chain condition

- * $\mathbb{R}[x_1,\ldots,x_n]$ is **Noetherian** (Hilbert basis theorem)
- * Assuming a polynomial vector field $f_i \in \mathbb{R}[x_1, \dots, x_n]$

» Ascending chain condition

- * $\mathbb{R}[x_1,\ldots,x_n]$ is **Noetherian** (Hilbert basis theorem)
- * Assuming a polynomial vector field $f_i \in \mathbb{R}[x_1, \dots, x_n]$

Let $p \in \mathbb{R}[x_1, \dots, x_n]$, then the ascending chain of ideals

$$\langle p \rangle \subseteq \langle p, p' \rangle \subseteq \langle p, p', p'' \rangle \subseteq \cdots$$

is finite, i.e. there exists a $k \in \mathbb{N}$ such that $\langle p, p', \dots, p^{(k)} \rangle = \langle p, p', \dots, p^{(K)} \rangle$ for all $K \geq k$.

» Ascending chain condition

- * $\mathbb{R}[x_1,\ldots,x_n]$ is **Noetherian** (Hilbert basis theorem)
- * Assuming a polynomial vector field $f_i \in \mathbb{R}[x_1, \dots, x_n]$

Let $p \in \mathbb{R}[x_1, \dots, x_n]$, then the ascending chain of ideals

$$\langle p \rangle \subseteq \langle p, p' \rangle \subseteq \langle p, p', p'' \rangle \subseteq \cdots$$

is finite, i.e. there exists a $k \in \mathbb{N}$ such that $\langle p, p', \dots, p^{(k)} \rangle = \langle p, p', \dots, p^{(K)} \rangle$ for all K > k.

- * k is the order of p w.r.t. to f, denoted ord_f(p)
- * ord_f(p) is computable using Gröbner bases

» In set of polynomial equalities

Let g be analytic.

$$g' = \sum_{i=1}^{n} \frac{\partial g}{\partial x_i} f_i = \nabla g \cdot f$$

$$g(\varphi(t,x)) = g(x) + g'(x)t + g''(x)\frac{t^2}{2!} + \cdots$$

$$\ln_f(g=0) \equiv g=0 \cap g'=0 \cap g''=0 \cap g'''=0 \cap \cdots$$

which can be described by an "infinite formula":

"
$$\ln_f(g=0)$$
 \equiv $g=0 \land g'=0 \land g''=0 \land g'''=0 \land \cdots$ "

» In set of **polynomial** inequalities

$$g(\varphi(t,x)) = g(x) + g'(x)t + g''(x)\frac{t^2}{2!} + \cdots$$

The situation with inequalities q < 0 is similar:

"
$$\ln_f(g < 0)$$
 $\equiv g < 0$

$$\lor (g = 0 \land \dot{g} < 0)$$

$$\lor (g = 0 \land \dot{g} = 0 \land \ddot{g} < 0)$$

$$\lor (g = 0 \land \dot{g} = 0 \land \ddot{g} < 0)$$

$$\lor (g = 0 \land \dot{g} = 0 \land \ddot{g} = 0 \land \ddot{g} < 0)$$

$$\vdots$$

» Semi-algebraic sets

$$\ln_{\mathbf{f}}(\mathbf{S}_1 \cap \mathbf{S}_2) = \ln_{\mathbf{f}}(\mathbf{S}_1) \cap \ln_{\mathbf{f}}(\mathbf{S}_2)$$

$$\ln_{\mathbf{f}}(\mathbf{S}_1 \cup \mathbf{S}_2) \supseteq \ln_{\mathbf{f}}(\mathbf{S}_1) \cup \ln_{\mathbf{f}}(\mathbf{S}_2)$$

Counterexample

$$\mathbf{x}' = 1$$
 and $\mathbf{S} = \{\mathbf{x} \in \mathbb{R} \mid \mathbf{x} \le 0 \lor (\mathbf{x} > 0 \land \sin(\mathbf{x}^{-1}) = 0)\}.$

- * $0 \not\in \ln_f(S)$
- * Therefore $0 \in \ln_f(S)^c$
- * $0 \not\in \ln_f(S^c)$

Thus: $\ln_f(S \cup S^c) = \ln_f(\mathbb{R}^n) = \mathbb{R}^n \neq \ln_f(S) \cup \ln_f(S^c)$.

» In set of semi-algebraic sets

$$S \equiv \bigvee_{i=1}^{l} \left(\bigwedge_{j=1}^{m_i} p_{ij} < 0 \wedge \bigwedge_{j=m_i+1}^{M_i} p_{ij} = 0 \right)$$

$$\ln_f(S) \equiv \bigvee_{i=1}^l \left(\bigwedge_{j=1}^{m_i} \ln_f(p_{ij} < 0) \wedge \bigwedge_{j=m_i+1}^{M_i} \ln_f(p_{ij} = 0) \right)$$

» LZZ Decision procedure

Checking problem

Given a semi-algebraic set S and a polynomial vector field f, check whether S is positively invariant for f.

- 1. Construct $\ln_f(S)$
- 2. Construct $\ln_{-f}(S^c)$ (using the reversed flow -f).
- 3. Check the semi-algebraic set inclusions $S \subseteq \ln_f(S)$ and $S^c \subseteq \ln_{-f}(S^c)$ using e.g. the CAD algorithm (Collins and Hong 1991).

» LZZ Decision procedure

Checking problem

Given a semi-algebraic set S and a polynomial vector field f, check whether S is positively invariant for f.

- 1. Construct $\ln_f(S)$
- 2. Construct $\ln_{-f}(S^c)$ (using the reversed flow -f).
- 3. Check the semi-algebraic set inclusions $S \subseteq \ln_f(S)$ and $S^c \subseteq \ln_{-f}(S^c)$ using e.g. the CAD algorithm (Collins and Hong 1991).

In practice, checking the inclusions **never** terminates!

Exit Sets

» Fxit sets

The exit set of $S \subseteq \mathbb{R}^n$ with respect to the local flow induced by x' = f(x) is defined as follows:

$$\mathsf{Exit}_{\mathbf{f}}(\mathbf{S}) \stackrel{\mathrm{def}}{=} \left\{ \mathbf{x} \in \mathbf{S} \mid \forall \ \mathbf{t} > 0. \ \exists \ \mathbf{s} \in (0,\mathbf{t}). \ \varphi(\mathbf{s},\mathbf{x}) \not \in \mathbf{S} \right\}.$$

 $\operatorname{Exit}_f(S)$ is the set of points in S from which the flow leaves S "immediately in the futur".

» Fxit sets

The exit set of $S \subseteq \mathbb{R}^n$ with respect to the local flow induced by x' = f(x) is defined as follows:

$$\mathrm{Exit}_{\mathbf{f}}(\mathbf{S}) \, \stackrel{\mathrm{def}}{=} \, \left\{ \mathbf{x} \in \mathbf{S} \mid \forall \ t > 0. \ \exists \ \mathbf{s} \in (0,t). \ \varphi(\mathbf{s},\mathbf{x}) \not \in \mathbf{S} \right\}.$$

 $\operatorname{Exit}_f(S)$ is the set of points in S from which the flow leaves S "immediately in the futur".

- * Exit_f(S) and Exit_{-f}(S) are not necessarily disjoint
- * neither do they cover the intersection $S \cap \partial S$

» Constructions

1. Reversing the flow

$$\operatorname{Exit}_{-\mathbf{f}}(\mathbf{S}) = \{ \mathbf{x} \in \mathbf{S} \mid \forall \ \mathbf{t} > 0. \ \exists \ \mathbf{s} \in (0, \mathbf{t}). \ \varphi(-\mathbf{s}, \mathbf{x}) \not\in \mathbf{S} \}$$

Complementing

$$\operatorname{Exit}_{\mathbf{f}}(\mathbf{S})^{\mathbf{c}} = \mathbf{S}^{\mathbf{c}} \cup \{\mathbf{x} \in \mathbf{S} \mid \exists \ \mathbf{t} > 0. \ \forall \ \mathbf{s} \in (0, \mathbf{t}). \ \varphi(\mathbf{s}, \mathbf{x}) \in \mathbf{S}\}$$

3. Exit set of the complement

$$\operatorname{Exit}_{\mathbf{f}}(\mathbf{S}^{\mathbf{c}}) = \{ \mathbf{x} \in \mathbf{S}^{\mathbf{c}} \mid \forall \ \mathbf{t} > 0. \ \exists \ \mathbf{s} \in (0, \mathbf{t}). \ \varphi(\mathbf{s}, \mathbf{x}) \in \mathbf{S} \}$$

» Characterizing positively invariant sets

via exit sets

A set $S \subseteq \mathbb{R}^n$ is positively invariant if and only if both $\operatorname{Exit}_{f}(S)$ and $\operatorname{Exit}_{-f}(S^{c})$ are empty.

For any set $S \subseteq \mathbb{R}^n$, $\operatorname{Exit}_f(S) = \ln_f(S)^c \cap S$.

$$\emptyset = \underbrace{ \ln_{f}(S)^{c} \cap S}_{\text{Exit}_{f}(S)} \iff S \subseteq \ln_{f}(S) \ ,$$

$$\emptyset = \underbrace{ \text{In}_{-f}(S^c)^c \cap S^c}_{\text{Exit}_{-f}(S^c)} \iff S^c \subseteq \text{In}_{-f}(S^c) \,.$$

000000000000

» Distributive properties

$$\operatorname{Exit}_{\mathbf{f}}(\mathbf{S}_1 \cap \mathbf{S}_2) = (\operatorname{Exit}_{\mathbf{f}}(\mathbf{S}_1) \cap \mathbf{S}_2) \cup (\mathbf{S}_1 \cap \operatorname{Exit}_{\mathbf{f}}(\mathbf{S}_2))$$

$$\operatorname{Exit}_{\mathit{f}}(S_1 \cup S_2) \subseteq \left(\operatorname{Exit}_{\mathit{f}}(S_1) \cap \ln_{\mathit{f}}(S_2)^c\right) \cup \left(\ln_{\mathit{f}}(S_1)^c \cap \operatorname{Exit}_{\mathit{f}}(S_2)\right)$$

» Distributive properties

$$\operatorname{Exit}_{\mathbf{f}}(\mathbf{S}_1 \cap \mathbf{S}_2) = (\operatorname{Exit}_{\mathbf{f}}(\mathbf{S}_1) \cap \mathbf{S}_2) \cup (\mathbf{S}_1 \cap \operatorname{Exit}_{\mathbf{f}}(\mathbf{S}_2))$$

$$\operatorname{Exit}_{\mathit{f}}(S_1 \cup S_2) \subseteq \left(\operatorname{Exit}_{\mathit{f}}(S_1) \cap \operatorname{In}_{\mathit{f}}(S_2)^c\right) \cup \left(\operatorname{In}_{\mathit{f}}(S_1)^c \cap \operatorname{Exit}_{\mathit{f}}(S_2)\right)$$

Counterexample

x'=1 and the sets

$$S_1 = \{0\} \cup \left\{ x \in \mathbb{R} \mid x > 0 \land \sin\left(x^{-1}\right) = 0 \right\},$$

$$S_2 = \{0\} \cup \left\{ x \in \mathbb{R} \mid x > 0 \land \sin\left(x^{-1}\right) \neq 0 \right\}.$$

- * $0 \in \operatorname{Exit}_f(S_1)$ and $0 \in \operatorname{Exit}_f(S_2)$
- $* \ 0 \not\in \ln_{\mathit{f}}(\mathcal{S}_1) \text{ and } 0 \not\in \ln_{\mathit{f}}(\mathcal{S}_2)$
- * $0 \notin \text{Exit}_f(S_1 \cup S_2)$ ($x \ge 0$ is a positively invariant set)

» Exit set of polynomial equalities

$$\begin{aligned} \operatorname{Exit}_{\mathbf{f}}(\mathbf{p} = 0) &\equiv \left(\begin{array}{c} \mathbf{p} = 0 \land \mathbf{p}' \neq 0 \\ &\lor \mathbf{p} = 0 \land \mathbf{p}' = 0 \land \mathbf{p}'' \neq 0 \end{array} \right. \\ & \vdots \\ & \lor \mathbf{p} = 0 \land \mathbf{p}' = 0 \land \mathbf{p}'' = 0 \land \dots \land \mathbf{p}^{(\operatorname{ord}_{\mathbf{f}}(\mathbf{p}))} \neq 0 \right). \end{aligned}$$

» Exit set of polynomial equalities

$$\begin{split} \operatorname{Exit}_{\mathbf{f}}(\mathbf{p} = 0) &\equiv \left(\begin{array}{c} \mathbf{p} = 0 \wedge \mathbf{p}' \neq 0 \\ &\vee \mathbf{p} = 0 \wedge \mathbf{p}' = 0 \wedge \mathbf{p}'' \neq 0 \end{array} \right. \\ &\vdots \\ &\vee \mathbf{p} = 0 \wedge \mathbf{p}' = 0 \wedge \mathbf{p}'' = 0 \wedge \cdots \wedge \mathbf{p}^{(\operatorname{ord}_{\mathbf{f}}(\mathbf{p}))} \neq 0 \right). \end{split}$$

The exit set of open sets is empty. In particular

$$\operatorname{Exit}_{\mathbf{f}}(\mathbf{p}<0)\equiv \mathbf{F}$$

» Decision procedure

Coarse granularity

Given a semi-algebraic set S and a polynomial vector field f, check whether S is positively invariant for f

- Construct Exit_f(S)
- 2. Construct $\operatorname{Exit}_{-f}(S^c)$ (using the reversed flow -f).
- 3. Check the emptiness of $Exit_f(S)$ and $Exit_{-f}(S^c)$ using e.g. the CAD algorithm (Collins and Hong 1991).

» Decision procedure

Coarse granularity

Given a semi-algebraic set S and a polynomial vector field f, check whether S is positively invariant for f

- Construct Exit_f(S)
- 2. Construct $\operatorname{Exit}_{-f}(S^c)$ (using the reversed flow -f).
- 3. Check the emptiness of $Exit_f(S)$ and $Exit_{-f}(S^c)$ using e.g. the CAD algorithm (Collins and Hong 1991).

But then we hit the same wall!

» Decomposition to basic semi-algebraic sets

Fine granularity

- * S semi-algebraic set encoded in a normal form $\bigwedge_{i=1}^k \bigvee_{j=1}^{m_i} (p_{ij} \bowtie_{ij} 0)$ (CNF)
- $* p_{ii} \in \mathbb{R}[x_1, \ldots, x_n]$
- $* m = \max_i m_i$
- $* d = \max_{i,j} \deg(p_{ij})$
- * $\rho = \max_{i,j} \operatorname{ord}_f(p_{ij})$

Then $\operatorname{Exit}_f(S) \vee \operatorname{Exit}_{-f}(\neg S)$ is a union of at most $k \rho m^k (\rho + 1)^{k-1}$ basic semi-algebraic sets

$$q_1 \bowtie_1 0 \wedge \ldots \wedge q_s \bowtie_s 0$$
,

where $s \le m - 1 + k(\rho + 1)$ and $\deg(q_i) \le d + \rho(\deg(f) - 1)$.

» Recursive procedure

Divide and conquer

Let S and R be two semi-algebraic sets. We define NonEmpty_f(S, R) recursively on the Boolean structure of S:

NonEmpty_f(S, R) returns False if and only if $Exit_f(S) \cap R$ is empty.

$$\begin{split} \operatorname{NonEmpty}_f(A,\ R) &:= \operatorname{Reduce}\left(\exists x_1 \ldots \exists x_n.\ \operatorname{Exit}_f(A) \wedge R\right)\ , \\ \operatorname{NonEmpty}_f(S_1 \wedge S_2,\ R) &:= \operatorname{NonEmpty}_f(S_1,\ S_2 \wedge R) \\ & \vee \operatorname{NonEmpty}_f(S_2,\ S_1 \wedge R)\ , \\ \operatorname{NonEmpty}_f(S_1 \vee S_2,\ R) &:= \operatorname{NonEmpty}_f(S_1, \neg \ln_f(S_2) \wedge R) \\ & \vee \operatorname{NonEmpty}_f(S_2,\ \neg \ln_f(S_1) \wedge R)\ , \\ \operatorname{NonEmpty}_f(\neg S,\ R) &:= \operatorname{NonEmpty}_f(\operatorname{Neg}(S),\ R)\ . \end{split}$$

» ES decision procedure

Theorem

A semi-algebraic set S is positively invariant for a system of polynomial ODEs x' = f(x) if and only if

$$\neg (NonEmpty_f(S,T) \lor NonEmpty_f(\neg S,T))$$
.

» ES decision procedure

Theorem

A semi-algebraic set *S* is positively invariant for a system of polynomial ODEs x' = f(x) if and only if

$$\neg (NonEmpty_f(S,T) \lor NonEmpty_f(\neg S,T))$$
.

Trade-ff

ES proposes a natural trade-off between the fine and coarse granularities suggested by the Boolean structure of the candidate *S*.

» Complexity analysis

Normal forms

- * S in in disjunctive normal form (DNF) $\bigvee_{i=1}^{k} \bigwedge_{j=1}^{m_i} A_{ij}$
- * A_{ij} are atomic formulas
- $* m = \max_i m_i$
- * The recursion depth of NonEmpty_f(S, T) is bounded by k+m
- * The number of calls to Reduce is $\sum_{i=1}^k m_i \leq km$
- * Each call has the form Reduce $\exists x_1 \dots \exists x_n$. Exit $_f(A_{rs}) \land R_{rs}$, where

$$R_{rs} \equiv igwedge_{j=1, j
eq s}^{m_r} A_{rj} \wedge \neg \Box_f \left(igvee_{i=1, i
eq s}^k igwedge_{j=1}^{m_i} A_{ij}
ight) \,.$$

A similar statement holds for conjunctive normal forms (CNF).

» DNF example

$$S \equiv (A_{11} \wedge A_{12}) \vee A_{21} \vee A_{31}$$
 ($k = 3$, $m = m_1 = 2$, $m_2 = m_3 = 1$).

The procedure NonEmpty_f(S, T) calls Reduce 4 times:

Reduce
$$\exists x_1 \dots \exists x_n$$
. Exit_f $(A_{11}) \wedge A_{12} \wedge \neg \ln_f(A_{21} \vee A_{31})$
Reduce $\exists x_1 \dots \exists x_n$. Exit_f $(A_{12}) \wedge A_{11} \wedge \neg \ln_f(A_{21} \vee A_{31})$
Reduce $\exists x_1 \dots \exists x_n$. Exit_f $(A_{21}) \wedge \neg \ln_f((A_{11} \wedge A_{12}) \vee A_{31})$
Reduce $\exists x_1 \dots \exists x_n$. Exit_f $(A_{31}) \wedge \neg \ln_f((A_{11} \wedge A_{12}) \vee A_{21})$

Examples

$\,\,$ The droplet ...

» ... is leaking!

ES took 0.3s to prove falsity while LZZ gave no answer (> 4h)

» Maltese cross

semi-linear invariant

ES proved invariance in 164s while LZZ gave no answer (>4h)

» Semi-algebraic invariant

ES proved invariance in 7s and LZZ in 30mn

» Ongoing/Future work

- * Experiment with RAGLib
- * What is the best encoding for S?
- * What are the topological spaces for which $\ln_f(S_1 \cup S_2) = \ln_f(S_1) \cup \ln_f(S_2)$?

Thanks for attending!

More details available here https://arxiv.org/abs/2009.09797