A Companion Darboux Polynomial for Parametric Linear ODE

by Khalil Ghorbal (Inria, France) on September 2, 2024

» Darboux Polynomials

Algebraic particular integrals

Given a polynomial ODE

$$\dot{x}_1 = f_1(x_1, \dots, x_n)$$
$$\vdots$$
$$\dot{x}_n = f_n(x_1, \dots, x_n)$$

a polynomial *p* is Darboux if and only if

$$\dot{p} \triangleq f \cdot \nabla p = q p$$

for some polynomial q, called the cofactor of p

» History and Recent Interests

- * Introduced By G. Darboux in 1878
- Instrumental in integrability theory (1983)
- * Rediscovered in automated reasoning (2010)

» History and Recent Interests

- * Introduced By G. Darboux in 1878
- Instrumental in integrability theory (1983)
- * Rediscovered in automated reasoning (2010)

Open Problems

- * Criteria for existence
- * Bound on the degree of irreducible Darboux
- * Efficient enumeration

» Linear ODE

$$\dot{x} = Ax$$

- * Real eigenvalue \iff linear Darboux
- * Complex eigenvalue \iff quadratic Darboux
- * Rational relations \iff cubic and higher Darboux

» Parametric Linear ODE

$$\begin{pmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \\ \dot{\mathbf{x}}_3 \end{pmatrix} = \begin{pmatrix} a_{1,1} & 0 & a_{1,3} \\ 1 & a_{2,2} & a_{2,3} \\ a_{3,1} & -1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix}$$

Challenge

Is there an effective way to define a Darboux polynomial for parametric linear ODE?

» Darboux Companion

tentative

Theorem

Let $\dot{x} = A^t x$ denote a linear ODE. then

$$\delta_{\mathcal{A}}(\mathbf{x}) = \det(\pi_{\mathcal{A}}(\mathbf{K}(\mathbf{x})))$$

is a Darboux polynomial for the considered ODE.

» Darboux Companion

Theorem

Let $\dot{x} = A^t x$ denote a linear ODE. then

 $\delta_{\mathcal{A}}(\mathbf{x}) = \det(\pi_{\mathcal{A}}(\mathbf{K}(\mathbf{x})))$

is a Darboux polynomial for the considered ODE.

- * K(x) is obtained from A by adding x to its first row
- $* \pi_A$ is the characteristic polynomial of A
- * the cofactor of δ_A is Tr(A) (like the Wronskian)

tentative

» Common mistake..

Let K(x) be the matrix obtained by adding x to the first row of A and leaving the other rows unchanged.

It means

$$K(x) = \begin{pmatrix} a11+x1 & a12+x2 & a13+x3 \\ a21 & a22 & a23 \\ a31 & a32 & a33 \end{pmatrix}.$$

It is claimed:

Then $\delta_A(x) := \det(\pi_A(K(x)))$ is a Darboux polynomial of cofactor tr(A) (where $\pi_A(t) = \det(A - tI)$).

But in our case n = 3 we have

$$\delta_A(x) := \det(\det(\pi_A(K(x))) = \det(\det(A - K(x))) = \det\left(\det\begin{pmatrix} -x1 & -x2 & -x3\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}\right) = 0.$$

But it is not a Darboux polynomial!

» Proof sketch

- * Let p(t) denote a column of the adjugate matrix of A tI
- * Let λ_i denote an eigenvalue of A
- * Then $A p(\lambda_i) = \lambda_i p(\lambda_i)$

$$\delta_{\mathcal{A}}(\mathbf{x}) = \prod_{i=1}^{n} (\mathbf{p}(\lambda_i) \cdot \mathbf{x}) = \det(\pi_{\mathcal{A}}(\mathbf{K}(\mathbf{x})))$$

» Intriguing Property

Let p(t) denote a column of the adjugate matrix of A - tI

$$p(t) = C egin{pmatrix} (-t)^{n-1} \ dots \ (-t) \ 1 \end{pmatrix}$$

Conjecture

det(C) divides all the coefficients of δ_A .

» Objectives

- * Remove the dependency to *p* (prove the conjecture)
- * Make δ_A invariant under matrix similarity
- *~ Directly compute the coefficients of $\delta_{\mathcal{A}}$

» **Objectives**

- * Remove the dependency to *p* (prove the conjecture)
- * Make δ_A invariant under matrix similarity
- *~ Directly compute the coefficients of $\delta_{\mathcal{A}}$

Thanks for attending!