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» Darboux Polynomials Algebraic particular integrals

Given a polynomial ODE

ẋ1 = f1(x1, . . . , xn)
...

ẋn = fn(x1, . . . , xn)

a polynomial p is Darboux if and only if

ṗ ≜ f · ∇p = q p

for some polynomial q, called the cofactor of p
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» History and Recent Interests

∗ Introduced By G. Darboux in 1878
∗ Instrumental in integrability theory (1983)
∗ Rediscovered in automated reasoning (2010)

Open Problems
∗ Criteria for existence
∗ Bound on the degree of irreducible Darboux
∗ Efficient enumeration
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» Linear ODE

ẋ = Ax

∗ Real eigenvalue ⇐⇒ linear Darboux
∗ Complex eigenvalue ⇐⇒ quadratic Darboux
∗ Rational relations ⇐⇒ cubic and higher Darboux
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» Parametric Linear ODE

ẋ1
ẋ2
ẋ3

 =

a1,1 0 a1,3
1 a2,2 a2,3

a3,1 −1 0

x1
x2
x3



Challenge
Is there an effective way to define a Darboux
polynomial for parametric linear ODE?
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» Darboux Companion tentative

Theorem
Let ẋ = Atx denote a linear ODE. then

δA(x) = det(πA(K(x)))

is a Darboux polynomial for the considered ODE.

∗ K(x) is obtained from A by adding x to its first row
∗ πA is the characteristic polynomial of A
∗ the cofactor of δA is Tr(A) (like the Wronskian)
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» Common mistake..
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» Proof sketch

∗ Let p(t) denote a column of the adjugate matrix of A− tI
∗ Let λi denote an eigenvalue of A
∗ Then A p(λi) = λip(λi)

δA(x) =
n∏
i=1

(p(λi) · x) = det(πA(K(x)))
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» Intriguing Property

Let p(t) denote a column of the adjugate matrix of A− tI

p(t) = C


(−t)n−1

...
(−t)
1



Conjecture
det(C) divides all the coefficients of δA.
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» Objectives

∗ Remove the dependency to p (prove the conjecture)
∗ Make δA invariant under matrix similarity
∗ Directly compute the coefficients of δA

Thanks for attending!
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