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Abstract

This paper is concerned with a covering problem of Euclidean space by a particular arrangement of
cones that are not necessarily full and are allowed to overlap. The problem provides an equivalent geometric
reformulation of the solvability of the linear complementarity problem defining the class of Q-matrices.
Assuming feasibility, we rely on standard tools from convex geometry to study maximal connected uncovered
regions, we term holes. We then use our approach to fully characterize the problem for dimension 3, regardless
of degeneracy. We further provide, for n ≤ 3, an algebraic characterization for the class of Q-matrices. That
is, we show that, M is a Q-matrix if and only if its entries belong to an explicit semi-algebraic set (in
dimension 9) where all the involved polynomials are subdeterminants of M . We showcase the usefulness of
such a characterization by generating 3-by-3 Q-matrices with specific interesting properties on the involved
cones.

Keywords. linear complementarity problem, Q-matrix, covering of Euclidean space, convex geometry,
algebraic characterization, symbolic computation.
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Introduction

Given a vector q ∈ Rn and an n×n matrix M over the reals, the linear complementarity problem, LCP(q,M),
asks whether there exists a pair w, z ∈ Rn satisfying w − Mz = q, w, z ≥ 0, and w.z = 0, where w, z ≥ 0
means that w and z belong to Rn

+, the nonnegative orthant of Rn, and w.z is the scalar product of w and
z (cf. [Cottle et al., 2009]). When LCP(q,M) admits a solution, it is said to be solvable. When a solution
satisfying only w, z ≥ 0 exists (i.e. when dropping the scalar product requirement), LCP(q,M) is said to be
feasible. Related to the solvability and feasibility concepts, several classes of matrices were defined in the
literature. Three classes are in particular relevant to this work. When LCP(q,M) is feasible for all q, M
is called an S-matrix. When LCP(q,M) is solvable for all q, M is called a Q-matrix. If furthermore such a
solution is unique for all q, M is called a P-matrix.

The solvability of linear complementarity problems was tackled from different angles.
In [Cottle et al., 1981a], a focus on the linear application represented by M proved to be useful. Degree the-
ory [Pang, 1979, Chapter 6] was exploited for certain classes of structured matrices (e.g. [Garcia et al., 1983]),
and more recently a new sufficient condition was provided in [Radons and Tonelli-Cueto, 2023]. More in line
with this work, [Murty, 1972] pointed out an insightful geometric interpretation for LCP(q,M). Instead of
fixing q ∈ Rn and solving for w and z, one could instead fix the pair (w, z) and solve for the vectors q. The
constraints w, z ≥ 0 and w.z = 0 imply that, for each i, either wi or zi has to vanish and the remaining
component has to be nonnegative making q an element of a cone spanned by some columns of −M and I
(the identity matrix in dimension n). In turn, asking for a solution for each q ∈ Rn becomes equivalent to
asking whether Rn is covered by the union of these cones.

In the late fifties, [Samelson et al., 1958] characterized a partition of Euclidean space with 2n full cones
using a separation condition. Their characterization provides a geometric reformulation of what later be-
came known as the class of P-matrices (with the separation being captured as the positiveness of the
principal minors of M). Several serious attempts have been subsequently made to characterize the class
of Q-matrices concisely and, despite the rich literature devoted to the problem, it remains open even for
low dimensions, see e.g. [Fredricksen et al., 1986]. [Kelly and Watson, 1979] proved that, while the set of
non-degenerate Q-matrices is open for n = 3, it is not for n = 4. Some subclasses of Q-matrices with
adequate structures were easier to tackle. The problem of recognizing a P-matrix was shown to be co-
NP-complete by [Coxson, 1994]. A larger class than P-matrices relies on oriented matroids realized by
I and −M was also studied in [Watson, 1974, Morris Jr, 1986]. [Morris Jr, 1988] provided a (counter)
example for n = 4 showing that the signs of subdeterminants of M alone are not enough to charac-
terize Q-matrices. As of today, the cost of checking generic Q-matrices remains prohibitive in practice,
see [Aganagić and Cottle, 1978, Naiman and Stone, 1998], and the best known practical approach presented
in [De Loera and Morris Jr., 1999] uses secondary and universal polytopes and is limited to dimensions less
than 10. It’s worth noting that these theoretical facts about the hardness of the problem are in contrast
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with the complexity of solving LCP(q,M) for a fixed q and M . Indeed, while the general problem (over
the integers) has been shown to be NP-complete by [Chung, 1989], there are specific practical instances for
which one can go beyond thousands of variables (cf. e.g. [Brugnano and Casulli, 2008]).

The rest of the paper is organized as follows. After a formal introduction of the problem (Section 1), we
investigate the relatively simpler feasibility problem to arrive at useful cones we term minimal (Section 2).
Section 3 focuses on solvability where we revisit the original separation condition by [Samelson et al., 1958]
in Section 3.1 and show a similar necessary (but not sufficient) condition for Q-matrices. This condition
insinuates a lead to refine the standard concept of separation using intersections of some specific cones
instead of hyperplanes separating vectors (Sections 3.2 and 3.3). These different ingredients are leveraged in
Section 4 to give a complete characterization of Q-matrices in dimension 3 regardless of degeneracy. Finally,
section 5 provides an equivalent algebraic characterization in terms of signs of the subdeterminants of the
involved matrix.

Contributions. To the best of our knowledge, the following are novel results related to Q-matrices.
Proposition 1 gives a necessary condition useful to characterize S-matrices, i.e. the feasibility problem, by
triangulating the space. Proposition 4 provides a necessary separation condition for the Q-covering problem
(cf. Definition 2). Proposition 5 gives an interesting covering property of particular relevant cones we term
minimal cones. The remaining results concern only dimension 3. Theorem 1 characterizes uncovered regions
assuming feasibility. Corollary 1 strengthens [Garcia et al., 1983, Theorem 4.7] by dropping the strong non-
degeneracy assumption. Theorem 2 gives necessary and sufficient conditions for the Q-covering problem.
The algorithms in Section 5 provide an explicit algebraic characterization for Q-matrices as sign conditions
of the subdeterminants of the involved matrix (Theorem 6). Such a characterization turned out to be very
convenient to generate Q-matrices with interesting properties (cf. Examples 1 and 2).

1 Q-covering

Let g1, . . . , gm ∈ Rn. The polyhedral cone or simply cone (resp. linear subspace) spanned by the vectors gi
will be denoted by ⟨g1, . . . , gm⟩ (resp. (g1, . . . , gm)). A cone is said to be non-degenerate if its generators
are linearly independent (as vectors in Rn). It is degenerate otherwise. A non-degenerate cone is said to
be full (or simplicial) if its generators form a basis of Rn.1 When C = ⟨g1, . . . , gm⟩ = (g1, . . . , gm), C is
said to be flat. Flatness and degeneracy should not be confused. A degenerate cone is not necessarily flat
(e.g. the half line ⟨g1, g1⟩, with g1 ̸= 0). Recall that a cone is said to be non-pointed if it contains both a
nonzero vector and its opposite. It is pointed otherwise. Thus, while a flat cone is necessarily non-pointed,
the converse is not necessarily true: for instance, a (closed) half-plane is both non-pointed and non-flat. The
relative interior of a cone C will be denoted by C⋄.2 One proves that ⟨g1, . . . , gm⟩⋄ is the set spanned by
the positive linear combination of g1, . . . , gm.

Let {a1, a
′
1}, . . . , {an, a

′
n} denote n pairs, or dyads, of vectors in Rn. Let the matrices A and A′ denote

respectively
(
a1 · · · an

)
and

(
a′
1 · · · a′

n

)
. Consider the mapping

[A,A′] : {0, 1}n → Rn×n

b 7→ [A,A′]b

where the ith column vector of the matrix [A,A′]b is ai if bi = 1 and a′
i otherwise. A complementary

cone, or c-cone, C is the cone spanned by the column vectors of [A,A′]b for some valuation of b, that is
C = [A,A′]b(Rn

+), the image set of Rn
+ through the linear application represented by [A,A′]b. We call the

column vectors of [A,A′]b, the generators of the c-cone C. A complementary face, or a c-face, is a face of a
c-cone [Rockafellar, 1997, Section 18]. An element of a c-face is a nonnegative combination of m, 1 ≤ m ≤ n,
column vectors of [A,A′]b [Rockafellar, 1997, Corollary 18.3.1]. When the subspace spanned by a face F has
dimension n− 1, F is called a facet. We define similarly a complementary linear subspace, or c-subspace, as
the set of linear combinations of m, 1 ≤ m ≤ n, columns of [A,A′]b for some b ∈ {0, 1}n.
Definition 1 (Covered and surrounded sets). A vector is said to be covered if it belongs to a c-cone. A
subset of Rn is said to be covered if all its vectors are covered. A vector is said to be surrounded if it has a
covered neighborhood. A subset of Rn is said to be surrounded if all its vectors are surrounded.

In this work we investigate what conditions the pair {ai, a
′
i} has to satisfy for Euclidean space to be

covered. Formally, we are interested in the following problem.

Definition 2 (Q-covering). Let {ai, a
′
i}, i = 1, . . . , n denote a list of n dyads of vectors in Rn. The Q-

covering decision problem asks whether Rn is covered, that is whether Σ = Rn where

Σ = {a1, a
′
1} ⊕ · · · ⊕ {an, a

′
n} :=

⋃
b∈{0,1}n

[A,A′]b(Rn
+) .

We adopt the sum notation for Σ in the sequel. We observe that Σ is invariant under any permutation
of the indices (⊕ is commutative). We think of the vector a′

i as the dual or the symmetric partner of ai in

1We warn the reader that, some authors, e.g. [Cottle et al., 2009], refer to simplicial complementary cones as non-degenerate.
2In classical textbooks, e.g. [Rockafellar, 1997], ⟨g1, . . . , gm⟩ is denoted by cone{g1, . . . , gm} and the relative interior of C is

denoted by riC.
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the sense that Σ remains invariant when swapping ai and a′
i for any i. The prime ‘ ′’ can be thought of as

an involutive operator providing the symmetric partner of ai. For instance, the opposite is a very special ‘ ′’
operator: when a′

i = −ai, for all i, Σ is the partition of Rn into the 2n standard orthants.
If L is a non-singular matrix, then q ∈ Rn is covered if and only if q belongs to a c-cone ⟨a1, . . . , an⟩

say, which is equivalent to Lq ∈ ⟨La1, . . . , Lan⟩. Therefore, the Q-covering problem is invariant under
non-singular linear transformations of the involved vectors. If all c-cones are degenerate, Rn, as a Baire
space, cannot be covered. So for Σ to be covering, at least one c-cone must be full. There is thus no loss
of generality in considering the standard basis e1, . . . , en of Rn respectively for a1, . . . , an (equivalently A
is the identity matrix) as required in the standard definition of the linear complementarity problem. Said
differently, with respect to Definition 2, {e1,−M1} ⊕ · · · ⊕ {en,−Mn} = Rn if and only if M = (M1 ··· Mn )
is a Q-matrix.

Remark 1. Regardless of the exact geometric intersection between two c-cones, each c-cone has n (ab-
stract) neighbors where two c-cones respectively generated by the column vectors of [A,A′]b and [A,A′]b′

are neighbors if and only if the Hamming distance between b and b′ is exactly one. Therefore, the c-cones
can be put in correspondence with the vertices of an n-dimensional hypercube graph Qn where the neighbor-
ing relationship is represented by the adjacency of the vertices in Qn. Stitching together all c-cones along
their common abstract facets, one at a time, following their neighborhood relationship, amounts to follow-
ing the longest Hamiltonian cycle of Qn (of length 2n). In general, a family of convex sets that covers the
space and for which the aforementioned neighboring relation makes sense is said to form a Q-arrangement.
In [Kelly and Watson, 1979], Q-arrangements of full c-cones are studied.

By introducing the equivalence relation ≃ over Rn \ {0} defined by u ≃ v if and only if u = λv for
some positive scalar λ, one observes that if a nonzero vector q is covered then so is q′ ≃ q. Thus one can
equivalently study the covering problem of the quotient space (Rn \ {0}) /≃ instead of Rn (observing that
q = 0 is trivially covered as it belongs to all c-cones). The quotient space (Rn \ {0}) /≃ is homeomorphic
to the unit sphere Sn−1 where each half-line is represented by its unit generator. Similarly, each c-cone is
represented by the (possibly degenerate) spherical (n − 1)-simplex formed by the representatives of the n
generators of the cone. The spherical covering was for instance instrumental in [Kelly and Watson, 1979,
Morris Jr, 1988, Cottle et al., 1981b]. (Notice, however, that the collection of the so obtained complementary
simplices does not necessarily form a simplicial complex, see [Goerss and Jardine, 2012], since degeneracy
and full dimensional intersections are allowed.)

In the sequel, we will find it useful to fix one or several coordinates of the Boolean vector b. We define

Σ(ai) :=
⋃

b∈{0,1}n
bi=1

[A,A′]b(Rn
+), Σ(a′

i) :=
⋃

b∈{0,1}n
bi=0

[A,A′]b(Rn
+) .

Clearly, for all i, Σ = Σ(ai) ∪ Σ(a′
i). We say that Σ(ai) is the set of c-cones rooted at ai to make the

syntactic requirement of the definition salient. (Indeed, ai could be among the generators of a c-cone
without necessarily having bi = 1. For instance when a2 ≃ a1, a1 qualifies as a generator for ⟨a′

1, a2⟩ while
b1 = 0.) The set of c-cones will be denoted by cones(Σ). Similarly, cones(Σ(ai)) will denote the set of
c-cones rooted at ai. We further let Σk, 1 ≤ k ≤ n, denote the union of all c-faces with m ≤ k generators:
for instance Σ1 is the set of cones ⟨ai⟩, ⟨a′

i⟩, i = 1, . . . , n. By convention, we let Σ0 denote the set of vectors
a1, . . . , an, a

′
1, . . . , a

′
n.

Definition 3 (Self surrounding). The vector ai is said to be self surrounded if it has a neighborhood covered
by Σ(ai).

Definition 4 (Lazy covering and surrounding). We say that ai is lazily covered if it belongs to Σ(a′
i). It is

lazily surrounded if it belongs to the topological interior of a c-cone rooted at a′
i.

We end this section by a simple definition which will be instrumental in the sequel. We use ⊆ for set
inclusion and ⊂ for proper (or strict) set inclusion.

Definition 5 (Hole). A hole is a non-empty open connected region in Σc := Rn \ Σ, the complement of Σ
with respect to Rn. A maximal hole is a hole K such that if K′ is another hole, K ⊆ K′ implies K′ = K.

Since Σ is a union of finitely many closed sets, Σc is an open set. In general, Σc is a union of disconnected
maximal holes. In this work, we will consider only maximal holes and refer to them simply as holes.
For instance, for n = 2, Σ = {e1,−e2} ⊕ {e2,−e1}, Σc has two disconnected holes, namely ⟨e1,−e2⟩⋄
and ⟨−e1, e2⟩⋄. A hole is not necessarily convex. For instance, when Σ = {e1, e1} ⊕ {e2, e2} = ⟨e1, e2⟩,
Σc = R2 \ ⟨e1, e2⟩ is a non-convex hole.

2 Feasibility

When Rn is covered by c-cones, some necessary conditions are intuitively clear and plausible. For instance,
one can easily see that Euclidean space cannot be covered by Σ when the 2n c-cones are all not full or when
all vectors of Σ0 belong to the same half-space. These conditions among others, collectively insinuate a
broader necessary condition requiring the vectors of Σ0 to be “well scattered” in the space to form enough
full c-cones that are in turn sufficiently distributed to achieve a covering. For instance, it is well known that
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at least n+ 1 full cones are required to cover Rn: a full cone C with an additional vector in the topological
interior of −C partition the space in n + 1 full cones. 3 We shall see that, in the context of this paper,
a similar separation property follows from Proposition 4. Let Γ = ⟨a1, a

′
1, . . . , an, a

′
n⟩. As we are working

in dimension n, Γ can be seen as the union of
(
2n
n

)
cones generated by any n vectors in Σ0. The set of

such cones will be denoted by cones(Γ). We proceed to investigate under which conditions Γ covers Rn

ensuring feasibility. We do this in Proposition 1 after stating a technical lemma (akin to fan and barycentric
triangulation) characterizing flat cones as those having 0 in their relative interior.

Lemma 1. Suppose that 0 ∈ ⟨g1, . . . , gm+1⟩⋄, 1 ≤ m ≤ n, then ⟨g1, . . . , gm+1⟩ is flat of dimension at most
m. Moreover, ⟨g1, . . . , gm+1⟩ = ∪iGi where Gi, 1 ≤ i ≤ m+1, is the cone generated by {g1, . . . , gm+1}\{gi}.

Proof. There exist α1, . . . , αm+1 > 0 such that 0 =
∑m+1

i=1 αigi. Thus (g1, . . . , gm+1) = (g1, . . . , gm). Let
x ∈ (g1, . . . , gm). Then x =

∑m
i=1 λigi where λi ∈ R. If λi ≥ 0 for all 1 ≤ i ≤ m, then x ∈ ⟨g1, . . . , gm⟩ ⊆

⟨g1, . . . , gm+1⟩. Otherwise, there exists a non-empty set of indices J such that λj < 0 for all j ∈ J . Let

λ = maxj∈J{−λj

αj
} > 0. So, for all i, λi + λαi ≥ 0. Then

x = x+ λ× 0 =

m∑
i=1

λigi + λ

m+1∑
i=1

αigi = λαm+1gm+1 +

m∑
i=1

(λi + λαi)gi

and x ∈ ⟨g1, . . . , gm+1⟩. Therefore (g1, . . . , gm+1) = (g1, . . . , gm) ⊆ ⟨g1, . . . , gm+1⟩ ⊆ (g1, . . . , gm+1). This
proves the first part of the lemma. For the second part, if J is empty, then x ∈ Gm+1, otherwise, if
we let k ∈ J denotes the index for which λ = −λk

αk
, then one sees that x ∈ Gk. Thus ⟨g1, . . . , gm+1⟩ ⊆

Gm+1 ∪ (∪j∈JGj) ⊆ ∪m+1
i=1 Gi. The converse inclusion is immediate and the equality holds as stated.

Proposition 1. Let k ≥ n + 1 and g1, . . . , gk denote k nonzero vectors of Rn. If Rn = ⟨g1, . . . , gk⟩ then
there exist i1, . . . , im+1 with 1 ≤ m ≤ n such that ⟨gi1 , . . . , gim+1⟩ is a flat of dimension m.

Proof. The proof is by induction on n. For n = 1, suppose R = ⟨g1, . . . , gk⟩ with k ≥ 2. Then 0 ∈
⟨g1, . . . , gk⟩⋄ and there exist λ1, . . . , λk > 0 such that

∑
i λigi = 0. If gi < 0 for all i we get a contradiction,

so there exists gj > 0. Similarly, if gi > 0 for all i we also get a contradiction, so there exists gℓ < 0 and we
have R = ⟨gj , gℓ⟩ and m = n = 1. Let π denote the orthogonal projection onto the hyperplane g⊥1 (g1 ̸= 0
by hypothesis). Let x ∈ g⊥1 which is a subset of Rn = ⟨g1, . . . , gk⟩. Then x =

∑k
i=1 λigi with λi ≥ 0. Thus

x = π(x) =
∑k

i=2 λiπ(gi) and therefore g⊥1 ⊆ ⟨π(g2), . . . , π(gk)⟩. The converse inclusion is immediate by
definition of π. Thus g⊥1 = ⟨π(g2), . . . , π(gk)⟩. By the induction hypothesis, there exists 1 ≤ m ≤ n − 1
such that ⟨π(gi2), . . . , π(gim+2)⟩ is a flat of dimension m. In particular π(gi2), . . . , π(gim+1) are linearly

independent. Assume without loss of generality that ij = j. We have 0 =
∑m+2

j=2 αjπ(gj), with αj > 0.

Moreover, for each gi, there exists θi ∈ R such that gi = θig1 + π(gi). Thus 0 =
∑m+2

j=2 αj(gj − θjg1) =

(−
∑m+2

j=2 αjθj)g1 +
∑m+2

j=2 αjgj . Let γ = −
∑m+2

j=2 αjθj . If γ > 0, then by Lemma 1, (g1, . . . , gm+2) =
(g1, . . . , gm+1) = ⟨g1, . . . , gm+2⟩. We further prove that g1, . . . , gm+1 are linearly independent. Suppose
0 =

∑m+1
i=1 σigi then 0 =

∑m+1
i=2 σiπ(gi) and since π(g2), . . . , π(gm+1) are linearly independent, σi = 0 for

all 2 ≤ i ≤ m + 1. Thus 0 = σ1g1, σ1 = 0, and ⟨g1, . . . , gm+2⟩ is a flat of dimension m + 1, which is what
we wanted to prove. If γ = 0, then by Lemma 1, (g2, . . . , gm+1) = (g2, . . . , gm+2) = ⟨g2, . . . , gm+2⟩. Thus
⟨g2, . . . , gm+2⟩ is a flat of dimension m. If γ < 0, then g1 ∈ ⟨g2, . . . , gm+2⟩ and Rn = ⟨g2, . . . , gk⟩. We repeat
the same reasoning with g2 and either we find a flat of dimension m or m + 1 or g2 can be also removed
from the list of generators till eventually reaching n+1 generators for Rn at which point m = n and we are
done.

Proposition 1 will be used in Section 5 to characterize the feasibility in dimension 3. In the sequel,
assuming Γ = Rn, we show in Proposition 2 that the space can be covered by what we term minimal cones.
Lemma 2 is akin to the anti-exchange property of Rn [Coppel, 1998, Chapter I, §3] and Lemma 3 can be
seen as an application of the conical version of Caratheodory’s theorem.

Lemma 2. Let u, v, g1, . . . , gm ∈ Rn, 1 ≤ m ≤ n − 1, such that u, g1, . . . , gm or v, g1, . . . , gm are linearly
independent. Then u ∈ ⟨v, g1, . . . , gm⟩ and v ∈ ⟨u, g1, . . . , gm⟩ if and only if u ≃ v. When m = 1, the linear
independence condition can be dropped.

Proof. There exist α, λ, αi, λi ≥ 0 such that u = αv +
∑m

i=1 αigi and v = λu +
∑m

i=1 λigi. Assume
v, g1, . . . , gm are linearly independent (otherwise, swap u and v in what follows). We get (1 − λα)v =∑m

i=1(λαi+λi)gi. The linear independence implies 1−αλ = 0 and αλi+αi = 0 for all i. Thus α, λ > 0 and
αi = λi = 0 for all i proving the statement. For m = 1, dropping the linear independence hypothesis, the
proof is by case distinction. If λα1 + λ1 = 0 then α, λ > 0 and α1 = λ1 = 0 and therefore v ≃ u. Likewise,
if αλ1 + α1 = 0, u ≃ v. Suppose λα1 + λ1 > 0 and αλ1 + α1 > 0. If 1− λα < 0 then u ≃ −g1 and v ≃ −g1
so u ≃ v. Otherwise u ≃ v ≃ g1.

3This fact can be seen as a corollary of Stiemke’s theorem [Cottle et al., 2009, Theorem 2.7.12].
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Lemma 3. Let G = ⟨g1, . . . , gn⟩ denote a cone in Rn. Let g be a nonzero vector in G and let Gi denote the
cone generated by {g, g1, . . . , gn} \ {gi}, 1 ≤ i ≤ n. Then G = ∪iGi. If moreover G is full then there exists
a non-empty set of indices J ⊆ {1, . . . , n} such that G = ∪j∈JGj, Gj is full, and Gj ⊆ G, for all j ∈ J .
Moreover Gj = G if and only if g ≃ gj.

Proof. We have g =
∑n

i=1 αigi for some nonnegative coefficients αi and, since g ̸= 0, there exists a non-
empty set of indices J ⊆ {1, . . . , n} such that αj > 0 for all j ∈ J . Let x ∈ G, i.e. x =

∑n
i=1 βigi for some

nonnegative coefficients βi. Let λ = minj∈J

{ βj

αj

}
= βk

αk
for some k ∈ J . We then have, for all i = 1, . . . , n,

βi − λαi ≥ 0 and

x =

n∑
i=1

βigi = λg +

n∑
i=1

(βi − λαi)gi = λg +
∑
i̸=k

(βi − λαi)gi .

Thus x ∈ Gk and G ⊆ ∪j∈JGj ⊆ ∪iGi. This proves the first statement. Suppose G is full and Gj is
degenerate for an index j ∈ J , then g belongs to the hyperplane Hj generated by gi, i ̸= j. 4 But then
gj ∈ Hj (because αj > 0) and G is itself degenerate, a contradiction. Thus Gj is full for all j ∈ J . Since
g ∈ G, Gj ⊆ G for all j. If in addition G ⊆ Gj for some index j, then by Lemma 2 (applied to g and gj as
u and v), this is equivalent to g ≃ gj .

Proposition 2. Assume Γ = Rn. Then for any x ∈ Rn, there exists a minimal cone G ∈ cones(Γ)
containing x, that is G is full and for any other full cone G′ ∈ cones(Γ), G′ ⊆ G implies G′ = G.

Proof. Since Γ = Rn, by the Caratheodory theorem, there exists a full cone G1 with n generators in Σ0 such
that x ∈ G1 (G1 needs not be unique). Let g1, . . . , gn ∈ Σ0 denote the n generators of G1 and suppose there
exists a nonzero vector gn+1 ∈ Σ0 \ {g1, . . . , gn} such that gn+1 ∈ G1 and gn+1 ̸≃ gi for all 1 ≤ i ≤ n. By
Lemma 3, there exists a full cone G2 ⊂ G1 containing x. Suppose without loss of generality that g1 ̸∈ G2

(such a vector must exist by construction of G2), so G2 = ⟨g2, . . . , gn+1⟩. If G2 itself contains a vector
gn+2 ∈ Σ0 \ {g1, . . . , gn+1} such that gn+2 ̸≃ gi for all 2 ≤ i ≤ n + 1, then again by Lemma 3, there exists
a full cone G3 ⊂ G2 containing x. At step k, we ask if Gk contains a vector gn+k ∈ Σ0 \ {g1, . . . , gn+k−1}
such that gn+k ̸≃ gi for all k ≤ i ≤ n + k − 1. The process must terminate after at most n steps since
Σ0 \ {g1, . . . , gn+n} is empty. We let G = Gk, 1 ≤ k ≤ n, where Gk does not contain any vector from Σ0

(apart from those in the equivalence classes of its generators with respect to ≃). In particular there is no
other cone G′ ∈ cones(Γ) such that G′ ⊂ G.

Minimal cones play an important role in locating holes. They will be for instance instrumental in Section 4
to characterize Q-covering for n = 3.

Proposition 3. Assume Γ = Rn. If Σ ⊂ Rn then there exists a minimal cone G ∈ cones(Γ) \ cones(Σ) such
that G ∩ Σc is non-empty.

Proof. Let x ∈ Σc. By Proposition 2, there exists a minimal cone G ∈ cones(Γ) containing x. The cone G
cannot be a c-cone since it contains x. So G ̸∈ cones(Σ). Clearly we have x ∈ G ∩ Σc and the intersection
is non-empty.

Remark 2. One can tighten the statement of Proposition 3 by saying that G⋄ ∩ Σc is a non-empty open
set. If x belongs to the interior of G then G⋄ ∩Σc is non-empty. Otherwise, since Σc is an open set, a small
perturbation of x remains in Σc while avoiding the boundaries of G. Thus G⋄ ∩ Σc is also non-empty.

While Γ and Σ are both finite unions of closed convex cones, they are only seemingly similar. An
important difference between the two being convexity: Γ is convex by definition, but Σ is not. This difference
introduces a substantial complexity to the covering problem. For instance, the extreme rays of Γ (if any) are
necessarily among the generators of Γ [Rockafellar, 1997, Corollary 18.3.1]. This same property is far from
obvious for Σ as we shall see in Section 4. The next section investigates some interesting properties of Σ.

3 Solvability

We start by proving a necessary condition for Rn to be covered, namely, that for all i, ai, a
′
i ̸= 0 and a′

i ̸≃ ai

(geometrically, this means that ⟨ai, a
′
i⟩ is not reduced to the origin nor is it a half-line).

Lemma 4. Assume there exists at least one full c-cone. If all full c-cones meet at a nonzero vector then
Σ ⊂ Rn. Moreover, if there exists an index i such that ai = 0 or a′

i ≃ ai then Σ ⊂ Rn.

Proof. If ai = a′
i = 0 for some index i, then all c-cones are degenerate contradicting the assumption. Assume

next that, there exists at least one full c-cone and that for all i, either ai ̸= 0 or a′
i ̸= 0. Suppose there exists

a vector p ̸= 0 that belongs to all full c-cones. The full c-cones cannot cover −p as this would contradict the
non-degeneracy assumption. This means that an open neighborhood U of −p is left to be covered by a finite
number of degenerate cones, which is impossible (Rn is a Baire space). 5 In particular, if ai = 0 and a′

i ̸= 0,

4In this paper, a hyperplane denotes a linear (or vector) subspace of dimension n− 1.
5Every complete metric space (such as Euclidean space) is a Baire space in which countable unions of closed sets with empty

interior have also an empty interior.
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then all full c-cones meet at p ≃ a′
i and the covering is impossible. Moreover, when ai ̸= 0 and a′

i ≃ ai then
all c-cones meet at p ≃ ai and the covering is also impossible.

Proposition 4 below states a necessary condition on pairs {ai, a
′
i} drawing upon an existing result

by [Samelson et al., 1958] characterizing the partition of Euclidean space into c-cones using separation which
we now define.

Definition 6 (Separation). Let H denote a hyperplane and let h denote a nonzero vector orthogonal to H.
Two vectors u, v are said to be separated by H if and only if the scalar products u.h and v.h are not zero
and have opposite signs. (Geometrically, u and v belong each to a distinct open half-space bounded by H.)

3.1 A Necessary Separation Condition

Proposition 4. If Σ = Rn then for each index i = 1, . . . , n there must exist a complementary hyperplane
(that is a c-subspace of dimension n− 1) separating the pair {ai, a

′
i}.

Proof. By Lemma 4, for all i, ai, a
′
i ̸= 0 and ai ̸≃ a′

i. The proof is by contradiction. Fix i and let
Vr, r = 1, . . . , 2n−1, denote the c-subspaces generated by the remaining (n − 1) vectors aj , a

′
j , j ̸= i. If

dim(Vr) < n− 1 for all r, then all c-cones are degenerate and Σ ⊂ Rn. Thus, there must exist a non-empty
subset of indices S ⊆ {1, . . . , 2n−1} such that Vs is a hyperplane for all s ∈ S. Assume that the pair {ai, a

′
i} is

not separated by any hyperplane Vs, s ∈ S. If ai, a
′
i ∈ Vs for all s, then again, all c-cones are degenerate and

Σ ⊂ Rn. Thus, there must exist a set of indices K ⊆ S such that ai ̸∈ Vk or a′
i ̸∈ Vk for all k ∈ K. Let Vk(i),

k ∈ K, denote the closed half-space bounded by Vk and containing either ai or a′
i in its interior. We thus

have ai, a
′
i ∈ V := ∩k∈KVk(i). The boundary of V , denoted ∂V , is a subset of the union of the boundaries

of Vk(i). Since V is a (closed) convex cone then ⟨ai, a
′
i⟩ ⊆ V . We show by contradiction that the topological

interior of V is non-empty. Assume it is empty. Then V is equal to its boundary ∂V and V = ∂V ⊆ ∪k∈KVk.
Since a′

i ∈ V , there exists an index k1 ∈ K such that a′
i ∈ Vk1 and ai ̸∈ Vk1 . Thus dim(ai, a

′
i) = 2 and

we construct a sequence of vectors pj ̸= 0, 1 ≤ j ≤ |K|, such that pj ∈ ⟨ai, pj−1⟩⋄ with p1 = a′
i. For each

j, pj ∈ V , so there exists an index kj ∈ K such that pj ∈ Vkj . If kj = kℓ for 1 ≤ j, ℓ ≤ |K|, j ̸= ℓ, then
pj , pℓ ∈ Vkj = Vkℓ , and (ai, a

′
i) = (pj , pℓ) ⊆ Vkj . But then ai, a

′
i ∈ Vkj , contradicting the fact that kj ∈ K.

Thus k1, . . . , k|K| are all distinct making K = {k1, . . . , k|K|}. Now consider a vector p ̸= 0 in ⟨ai, p|K|⟩⋄.
Then there exists kj ∈ K such that p ∈ Vkj and therefore (ai, a

′
i) = (p, pj) ⊆ Vkj , a contradiction. So the

topological interior of V is non-empty. We denote it by V ⋄. We show next that −V ⋄ is a hole. First, by
definition of V ⋄, V ⋄ ⊆ Vk(i), thus −V ⋄ ⊆ Vk(i)

c, for each k ∈ K. Therefore −V ⋄ ⊆ ∩kVk(i)
c = (∪kVk(i))

c.
Second, let C(ai, Vr) denote the c-cone spanned by ai and the generators of Vr. For k ∈ K, since Vk does
not separate the pair {ai, a

′
i} then C(ai, Vk) ∪ C(a′

i, Vk) ⊆ Vk(i). Thus

ΣK := ∪k∈K

(
C(ai, Vk) ∪ C(a′

i, Vk)
)
⊆ ∪k∈KVk(i),

and
(
∪k∈KVk(i)

)c ⊆ (ΣK)c. Thus −V ⋄ ⊆ (ΣK)c. Finally, all is left to cover −V ⋄ is a finite set of degenerate
c-cones, namely C(ai, Vr) and C(a′

i, Vr), r ̸∈ K. Covering an open set with a finite number of degenerate
cones is impossible (by Baire’s theorem). So there must exist an index s ∈ S such that Vs is a hyperplane
separating the pair {ai, a

′
i}.

With respect to the notations of the proof of Proposition 4, the seminal work of [Samelson et al., 1958]
shows that Σ partitions Rn if and only if, for each index i = 1, . . . , n and for each r = 1, . . . , 2n−1, the
c-subspace Vr is a hyperplane separating the pair {ai, a

′
i}. Proposition 4 shows that, for Σ to be (only)

covering, it is necessary that for each index i at least one c-subspace Vr is a complementary hyperplane
separating the pair {ai, a

′
i}. We know that this necessary condition is not sufficient in general to prove that

Σ is covering. For instance, in the plane, let a′
1 = −e1 + e2 and a′

2 = −e1. Then Σ = {e1, a′
1} ⊕ {e2, a′

2}
covers only the closed upper half-plane. The pair {e1, a′

1} is separated by the line (e2) and the pair {e2, a′
2}

is separated by the line (a′
1).

In the next section we shift focus on how c-facets (instead of c-hyperplanes) might “separate” pairs via
intersections.

3.2 Dyadic Covering

We shall see several interesting properties concerned with intersections of c-facets with the cone ⟨ai, a
′
i⟩. We

start by stating three generic relevant intersections (all depicted in Fig. 1) that will be instrumental in the
rest of the paper. Lemmas 5 and 6 play a role in the forthcoming Propositions 5 and 6. Lemma 7 shall be
used in Section 4.

Lemma 5 (Front Intersection (cf. Fig 1a)). Fix m ≥ 2 and let C = ⟨v1, v2, . . . , vm⟩ and C′ = ⟨v′1, v2, . . . , vm⟩.
If there exists a nonzero vector in ⟨v′1, v1⟩ ∩ ⟨v2, . . . , vm⟩ then ⟨v′1, v1, v2, . . . , vm⟩ = C ∪ C′.

Proof. Let c ∈ ⟨v′1, v1, v2, . . . , vm⟩. There exist α′
1, α1, . . . , αm ≥ 0 such that c = α1v1 + α′

1v
′
1 +

∑
i≥2 αivi.

By assumption, there exist λ′
1, λ1, . . . , λm ≥ 0, (λ1, λ

′
1) ̸= (0, 0), such that λ1v1+λ′

1v
′
1 =

∑
i≥2 λivi. Suppose
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v′1
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v′1
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v2

v3

(c) Back

Figure 1: Conical intersections

λ1, λ
′
1 > 0 and let β = min{α1

λ1
,
α′
1

λ′
1
} ≥ 0. Then

c = c+ β × 0 = α1v1 + α′
1v

′
1 +

∑
i≥2

αivi + β(−λ1v1 − λ′
1v

′
1 +

∑
i≥2

λivi)

= (α1 − βλ1)v1 + (α′
1 − βλ′

1)v
′
1 +

∑
i≥2

(αi + βλi)vi .

By definition of β, the coefficients of v1 and v′1 are both nonnegative and one of them has to vanish. Thus

c ∈ C ∪ C′. The same holds when λ1 = 0 (resp. λ′
1 = 0) by taking β as

α′
1

λ′
1

(resp. α1
λ1

). The converse

inclusion is immediate.

Lemma 6 (Side Intersection (cf. Fig 1b)). Fix m ≥ 2 and let C = ⟨v1, v2, . . . , vm⟩ and C′ = ⟨v′1, v2, . . . , vm⟩.
If ⟨−v1, v

′
1⟩⋄ ∩ ⟨v2, . . . , vm⟩ is non-empty then ⟨v1, v′1, v2, . . . , vm⟩ ⊆ C.

Proof. By assumption, there exist α′
1, α1, . . . , αm ≥ 0 such that α1(−v1)+α′

1v
′
1 =

∑
i≥2 αivi with α1, α

′
1 > 0.

Thus v′1 ∈ C and ⟨v1, v′1, v2, . . . , vm⟩ ⊆ C.

Lemma 7 (Back Intersection (cf. Fig 1c)). Let G = ⟨v1, v′1, v2, . . . , vn−1⟩ denote a full cone in Rn. Sup-
pose there exists a vector p ̸= 0 such that p ∈ ⟨−v1,−v′1⟩ ∩ ⟨v2, . . . , vn⟩ then G⋄ ⊆ (⟨v1, v2, . . . , vn⟩ ∪
⟨v′1, v2, . . . , vn⟩)c.

Proof. There exist λ1, λ
′
1, λ2, . . . , λn ≥ 0, (λ1, λ

′
1) ̸= (0, 0) such that

p = λ1(−v1) + λ′
1(−v′1) =

n∑
i=2

λivi . (1)

If λn = 0 then G is degenerate. Thus λn > 0. Let g ∈ G⋄. Then g = α1v1 + α′
1v

′
1 +

∑n−1
i=2 αivi with

α1, α
′
1, α2, . . . , αn−1 > 0. Suppose that g ∈ ⟨v1, . . . , vn⟩, then there exist βi ≥ 0 such that g =

∑n
i=1 βivi.

Thus α1v1 + α′
1v

′
1 +

∑n−1
i=2 αivi =

∑n
i=1 βivi and

α′
1v

′
1 +

n−1∑
i=1

(αi − βi)vi = βnvn . (2)

If βn = 0 then α′
1 = 0 (because v1, v

′
1, v2, . . . , vn−1 are linearly independent), which contradicts α′

1 > 0.
Thus βn > 0. Since λn, βn > 0 we can eliminate vn in Eq. 1 and Eq. 2. We get

(βnλ
′
1 + λnα

′
1)(−v′1) +

n−1∑
i=1

(βnλi + λn(αi − βi))(−vi) = 0 .

As v1, v
′
1, v2, . . . , vn−1 are linearly independent, all the coefficients must vanish. In particular, βnλ

′
1+λnα

′
1 =

0 which implies λnα
′
1 = 0, a contradiction. Thus g ̸∈ ⟨v1, . . . , vn⟩. Swapping v1 and v′1 in the discussion

above, we prove that g ̸∈ ⟨v′1, v2, . . . , vn⟩ and therefore G⋄ ⊆ (⟨v1, . . . , vn⟩ ∪ ⟨v′1, v2, . . . , vn⟩)c as stated.

Proposition 5 states an interesting covering property of the cone ⟨ai, a
′
i⟩. Its proof requires the following

technical lemma. 6

Lemma 8. Let G = ⟨g1, . . . , gm⟩, m ≥ 2, denote a cone in Rn and let q ̸∈ G be such that ⟨g1, q⟩ is non-flat.
Suppose there exists a nonzero vector in ⟨g1, q⟩⋄∩G then there exists a nonzero vector in ⟨g2, . . . , gm⟩∩⟨g1, q⟩⋄.

Proof. Let p′ ̸= 0 be in ⟨g1, q⟩⋄∩G. Then there exists λ1, λ > 0 and α1, . . . , αm ≥ 0 such that p′ = λ1g1+λq =∑m
i=1 αigi. Since q ̸∈ G then 0 < λ1 − α1. Let p = (λ1 − α1)g1 + λq. Then, p ∈ ⟨g2, . . . , gm⟩ ∩ ⟨g1, q⟩⋄. If

p = 0 then −g1 ≃ q (q ̸= 0 because q ̸∈ G), making ⟨g1, q⟩ flat. Thus p ̸= 0.

Proposition 5. The cone ⟨ai, a
′
i⟩ cannot be partially covered, i.e. either ⟨ai, a

′
i⟩ ⊆ Σ or ⟨ai, a

′
i⟩⋄ ⊆ Σc.

6The original proof was by induction on m. The provided shorter constructive proof was suggested by Jean-Charles Gilbert in
a private communication with the first author.
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Proof. We fix i to 1 for clarity. If dim(a1, a
′
1) ≤ 1, then ⟨a1, a

′
1⟩ ⊆ Σ. Assume next that dim(a1, a

′
1) = 2

(in particular a′
1 ̸≃ −a1). Suppose there exists a ∈ ⟨a1, a

′
1⟩⋄ such that a ∈ Σ. So a belongs to a c-cone

C = ⟨a1, . . . , an⟩ say (otherwise swap a1 and a′
1 in what follows). If a′

1 ∈ C then, by convexity of C,
⟨a1, a

′
1⟩ ⊆ C ⊆ Σ. Assume a′

1 ̸∈ C. By Lemma 8, ⟨a1, a
′
1⟩⋄ intersects the face ⟨a2, . . . , an⟩ of C in a nonzero

vector. By Lemma 5, ⟨a′
1, a1, . . . , an⟩ ⊆ ⟨a1, a2, . . . , an⟩∪⟨a′

1, a2, . . . , an⟩ which implies ⟨a1, a
′
1⟩ ⊆ Σ. Finally,

if such an a does not exist then ⟨a1, a
′
1⟩⋄ ⊆ Σc, which ends the proof.

We further characterize when the cone ⟨ai, a
′
i⟩ is covered. It turns out that such a covering requires

specific intersections with c-faces.

Proposition 6. Let ai, a
′
i ∈ Rn. Then ⟨ai, a

′
i⟩ ⊆ Σ if and only if either dim(ai, a

′
i) ≤ 1 or dim(ai, a

′
i) = 2

and there exists a c-face Fi := ⟨a1, . . . , ai−1, ai+1, . . . , an⟩ and a vector p ̸= 0 such that one of the following
conditions occurs:

1. p ∈ ⟨ai, a
′
i⟩ ∩ Fi, 2. p ∈ ⟨−ai, a

′
i⟩⋄ ∩ Fi, 3. p ∈ ⟨ai,−a′

i⟩⋄ ∩ Fi .

In all cases, one has ⟨a′
i, a1, . . . , an⟩ ⊆ Σ.

Proof. We fix i to 1 for clarity. Suppose ⟨a1, a
′
1⟩ ⊆ Σ and that dim(a1, a

′
1) = 2. Let a ∈ ⟨a1, a

′
1⟩⋄, that

is a = α1a1 + α′
1a

′
1, α1, α

′
1 > 0. Since a ∈ Σ, then either (i) a ∈ ⟨a1, . . . , an⟩ or (ii) a ∈ ⟨a′

1, . . . , an⟩
for some c-face F1 = ⟨a2, . . . , an⟩. For (i), one gets α1a1 + α′

1a
′
1 =

∑n
i=1 βiai with β1, . . . , βn ≥ 0. Thus

(α1 − β1)a1 + α′
1a

′
1 =

∑n
i=2 βiai. Let p = (α1 − β1)a1 + α′

1a
′
1. Then p ̸= 0 as otherwise dim(a1, a

′
1) ≤ 1.

• If α1 − β1 ≥ 0 then p ∈ ⟨a1, a
′
1⟩ ∩ F1 (case 1 of the statement).

• If α1 − β1 < 0 then p ∈ ⟨−a1, a
′
1⟩⋄ ∩ F1 (case 2 of the statement).

The same discussion holds by swapping a1 and a′
1 for (ii), leading to case 3. For the converse, if dim(a1, a

′
1) ≤

1 then it is immediate that ⟨a1, a
′
1⟩ ⊆ Σ. Otherwise, one of the stated conditions holds. If the first condition

holds, then by Lemma 5 ⟨a1, a
′
1, a2, . . . , an⟩ ⊆ ⟨a1, a2, . . . , an⟩ ∪ ⟨a′

1, a2, . . . , an⟩ ⊆ Σ. If the second condition
holds, then by Lemma 6, ⟨a1, a

′
1, a2, . . . , an⟩ ⊆ ⟨a1, . . . , an⟩ ⊆ Σ. If the third condition holds, then by

Lemma 6 ⟨a1, a
′
1, a2, . . . , an⟩ ⊆ ⟨a′

1, . . . , an⟩ ⊆ Σ and ⟨a1, a
′
1⟩ ⊆ Σ, as stated.

3.3 Surrounding

When the cone ⟨ai, a
′
i⟩ is degenerate, its front, side and back intersections with c-faces become ill-defined.

We argue that these intersections are only relevant whenever ⟨ai, a
′
i⟩ is non-degenerate. We have already

seen in Lemma 4 that ai ̸≃ a′
i for all i is a necessary condition for Σ to be covering. We shall see next that

when ⟨ai, a
′
i⟩ is flat, we can drop the pair altogether and reduce the dimension of the Q-covering problem

by 1.

Proposition 7. Assume that ai ̸= 0 and suppose that ⟨ai, a
′
i⟩ is flat. Let a⊥

i denote the hyperplane orthogonal
to ai, and let v̄ denote the orthogonal projection of a vector v onto a⊥

i . Then Σ = Rn if and only if the sum
{ā1, ā

′
1} ⊕ · · · ⊕ {āi−1, ā

′
i−1} ⊕ {āi+1, ā

′
i+1} ⊕ · · · ⊕ {ān, ā

′
n} covers a⊥

i (which is isomorphic to Rn−1).

Proof. For clarity we fix i to 1. Let h ∈ a⊥
1 . Since Rn ⊆ Σ, the vector xh := α1a1+h with α1 ∈ R, belongs to

a c-cone ⟨a1, . . . , an⟩ say. Thus xh =
∑n

i=1 λiai, λ1, . . . , λn ≥ 0, and h = xh−α1a1 = (λ1−α1)a1+
∑

i≥2 λiai,

and h = h̄ =
∑

i≥2 λiāi as stated. The same occurs if xh ∈ ⟨a′
1, a2, . . . , an⟩ since a1 ≃ −a′

1. To prove the

converse, let x ∈ Rn and decompose x = α1a1 + h with h ∈ a⊥
1 . Thus h belongs to some cone ⟨ā2, . . . , ān⟩.

Equivalently, there exist λi ≥ 0 such that h =
∑

i≥2 λiāi. We have ai = γia1 + āi, γi ∈ R, for each i.
Therefore

x = α1a1 + h = α1a1 +
∑
i≥2

λiāi = α1a1 +
∑
i≥2

λi(ai − γia1)

=
(
α1 −

∑
i≥2

λiγi︸ ︷︷ ︸
α

)
a1 +

∑
i≥2

λiai

If α ≥ 0 then x ∈ ⟨a1, . . . , an⟩ ⊆ Σ as required. If α < 0 then there exists α′ ≥ 0 such that αa1 = α′a′
1

(using a1 ≃ −a′
1) and x ∈ ⟨a′

1, . . . , an⟩ proving that x ∈ Σ as well.

Self surrounding (cf. Definition 3) is in fact equivalent to a Q-covering problem in lower dimension.

Proposition 8. Assume that ai ̸= 0 and let v̄ denote the orthogonal projection of a vector v onto a⊥
i ,

the hyperplane orthogonal to ai. Then ai is self-surrounded if and only if {ā1, ā
′
1} ⊕ · · · ⊕ {āi−1, ā

′
i−1} ⊕

{āi+1, ā
′
i+1} ⊕ · · · ⊕ {ān, ā

′
n} defines a Q-covering of a⊥

i .

Proof. Let’s fix i to 1. If there exists a neighborhood U of a1 such that U ⊆ Σ(a1), then its projection Ū onto
a⊥
1 contains 0 in its relative interior and must be included by definition of Σ(a1) in {ā2, ā

′
2}⊕ · · ·⊕ {ān, ā

′
n}.

Any nonzero vector in a⊥
1 has a representative (with respect to ≃) in Ū and is therefore covered. Thus

a⊥
1 ⊆ {ā2, ā

′
2} ⊕ · · · ⊕ {ān, ā

′
n}. For the converse, consider Σ′ = {a1,−a1} ⊕ {a2, a

′
2} ⊕ · · · ⊕ {an, a

′
n}.

By Proposition 7, Rn ⊆ Σ′ and therefore a1 is surrounded with respect to Σ′. Moreover, a1 can only be
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self-surrounded (with respect to Σ′) since if it belongs to any c-cone in cones(Σ′(−a1)) then such a c-cone
must be degenerate and therefore it does not effectively contribute in surrounding a1. Thus there exists a
neighborhood U of a1 such that U ⊂ Σ′(a1). By definition of Σ′, Σ′(a1) = Σ(a1). Thus U ⊂ Σ(a1) and a1

is self-surrounded with respect to Σ as desired.

Remark 3. In light of Proposition 8, Proposition 7 can be reformulated as follows. Suppose that there exists
an index i such that ai ̸= 0 and that ⟨ai, a

′
i⟩ is flat. Then Rn is covered if and only if ai is self surrounded.

In general, the Q-covering problem does not enjoy an inductive property, that is, if Σ = Rn, it is not
necessary that ai is self surrounded for all i. It is worth mentioning that, in [Cottle, 1980], a subclass of
Q-matrices, coined completely Q-matrices, was introduced in which the inductive nature is preserved.

Similar to self surrounding, lazy surrounding (cf. Definition 4) can be also seen as a Q-covering problem
in dimension n− 1. The next proposition is stated for a1 for clarity. The statement holds however for any
ai with appropriate changes.

Proposition 9. Suppose a1 belongs to the topological interior of a c-cone C = ⟨a′
1, a2, . . . , an⟩. Then

{ā′
1, ā2} ⊕ · · · ⊕ {ā′

1, ān} defines a Q-covering of a⊥
1 .

The converse holds only when det( a1 a2 ... an ) det( a′
1 a2 ... an ) > 0. 7

Proof. Suppose a1 belongs to the topological interior of a c-cone C = ⟨a′
1, a2, . . . , an⟩, then a1 ̸= 0 and

0 ∈ ⟨−a1, a
′
1, a2, . . . , an⟩⋄. By Lemma 1, ⟨−a1, a

′
1, a2, . . . , an⟩ = (−a1, a

′
1, a2, . . . , an) = (a′

1, a2, . . . , an) = Rn

(because C is non-degenerate) and

⟨−a1, a
′
1, a2, . . . , an⟩ = C ∪ ⟨−a1, a2, . . . , an⟩ ∪ ∪n

i=2⟨−a1, a
′
1, a2, . . . , ai−1, ai+1 . . . , an⟩ = Rn .

Moreover, by Lemma 3, C = ⟨a1, . . . , an⟩ ∪ ∪n
i=2⟨a′

1, a1, a2, . . . , ai−1, ai+1 . . . , an⟩. Let Σ′ = {a1,−a1} ⊕
{a′

1, a2} ⊕ · · · ⊕ {a′
1, an}. Then by definition of Σ′ one has

Σ′(a1) = ⟨a1, . . . , an⟩ ∪ ∪n
i=2⟨a1, a

′
1, a2, . . . , ai−1, ai+1 . . . , an⟩ = C

Σ′(−a1) = ⟨−a1, a2, . . . , an⟩ ∪ ∪n
i=2⟨−a1, a

′
1, a2, . . . , ai−1, ai+1 . . . , an⟩

Therefore, Σ′(a1) ∪ Σ′(−a1) = Rn. By Proposition 7, {ā′
1, ā2} ⊕ · · · ⊕ {ā′

1, ān} defines a Q-covering of a⊥
1 .

Conversely, if {ā′
1, ā2} ⊕ · · · ⊕ {ā′

1, ān} defines a Q-covering of a⊥
1 then either a1 or −a1 is in the topological

interior of C. To ensure the former, a1 and a′
1 must not be separated by the hyperplane (a2, . . . , an) which

is equivalent to saying that det( a1 a2 ... an ) and det( a′
1 a2 ... an ) are both nonzero and have the same sign

(if a1 and a′
1 are separated by the hyperplane (a2, . . . , an) then surely a1 ̸∈ ⟨a′

1, a2, . . . , an⟩).

Both Propositions 8 and 9 will be used in Section 5 to arrive at an algebraic characterization of Q-matrices
in dimension 3.

4 Q-covering for n = 3

A cone in cones(Γ) \ cones(Σ) must be necessarily rooted at both ai and a′
i for some indices i. Follow-

ing [Garcia et al., 1983], when such an index is unique, the cone is called an almost c-cone. Assuming
Γ = Rn, it is clear that Σ is covering if and only if all minimal cones are covered (necessity is obvious
and sufficiency is a corollary of Proposition 3). This section investigates in depth the case n = 3 with the
objective of a complete understanding of when minimal cones are not covered. For this dimension, all cones
in cones(Γ) \ cones(Σ) are almost c-cones and have the form ⟨ai, a

′
i, aj⟩, j ̸= i. Thus for n = 3, assuming

Γ = R3, Σ is covering if and only if all (full) almost c-cones are covered. This investigation leads to a complete
understating of holes for this dimension (Theorem 1) as well as a characterization of the Q-covering problem
for n = 3 (Theorem 2) which is amenable to an algebraic characterization as we shall see in Section 5. It is
worth mentioning that Corollary 1 reduces the Q-covering problem to the surrounding of the vectors in Σ0.
It strengthens [Garcia et al., 1983, Theorem 4.7] by dropping the strong non-degeneracy assumption (which
requires the non-degeneracy of all c-cones and almost c-cones). We start by a useful sufficient condition for
minimal cones to be covered.

Proposition 10. Let i, j, k denote three distinct indices and let G = ⟨ai, a
′
i, aj⟩ ⊂ R3 denote a minimal

cone. Assume ⟨ai, a
′
i⟩ is covered. If −ak ̸∈ G then G ⊆ Σ.

Proof. The proof is by case distinction following a partition of R3 suggested by G. Namely, −G =
⟨−ai,−a′

i,−aj⟩, the interior of 7 full cones Ci, the relative interior of 9 facets Fi and 3 rays Ri where C1 = G⋄,
C2 = ⟨a′

i,−ai, aj⟩⋄, C3 = ⟨−a′
i, ai, aj⟩⋄, C4 = ⟨−ai,−a′

i, aj⟩⋄, C5 = ⟨ai, a
′
i,−aj⟩⋄, C6 = ⟨a′

i,−ai,−aj⟩⋄,
and C7 = ⟨−a′

i, ai,−aj⟩⋄; F1 = ⟨ai, aj⟩⋄, F2 = ⟨ai, a
′
i⟩⋄, F3 = ⟨a′

i, aj⟩⋄, F4 = ⟨−ai, a
′
i⟩⋄, F5 = ⟨−ai, aj⟩⋄,

F6 = ⟨−a′
i, aj⟩⋄, F7 = ⟨ai,−a′

i⟩⋄, F8 = ⟨ai,−aj⟩⋄, and F9 = ⟨a′
i,−aj⟩⋄; R1 = ⟨ai⟩, R2 = ⟨a′

i⟩, and R3 = ⟨aj⟩.
Cf. Fig. 2. By minimality of G, ak cannot be in C1, F1, F2, F3. If ak ∈ C5, C6, C7, F4, F7, F8, F9, R1, R2, then
G ⊆ ⟨ai, a

′
i, aj , ak⟩ ⊆ Σ where the last inclusion is a consequence of Proposition 6. If ak ∈ C4, F5, F6, R3,

then G ⊆ G′ = ⟨ai, a
′
i, ak⟩. Since ⟨ai, a

′
i⟩ is covered, by Proposition 6, a c-face must intersect ⟨ai, a

′
i⟩ or

⟨−ai, a
′
i⟩⋄ or ⟨ai,−a′

i⟩⋄ (such a c-face must have either aj or ak as generator) and either G ⊆ Σ or G′ ⊆ Σ.

7In this case, the hyperplane (a2, . . . , an) is sometimes said to be reflective.
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R1 = ⟨ai⟩

R2 = ⟨a′i⟩

R3 = ⟨aj⟩

F2

F4

F5
F6

F7
ai

a′i

aj

F1

F3

F8

F9 ai

a′i

aj

C1

C2

C3

C4

C5

C6

C7

Figure 2: Decomposition of R3 in the proof of Proposition 10.

In both cases, G is covered. If ak ∈ C2 then G ⊆ ⟨ai, aj , ak⟩ ∪ G′. Since ⟨ai, a
′
i⟩ is covered, as discussed

above, a c-face having either aj or ak as generator satisfies the hypothesis of Proposition 6, and either G
is covered or G′ is covered. Thus, in all cases G ⊆ Σ. The same holds when ak ∈ C3 by swapping ai and
a′
i.

The following proposition is akin to the case of the so called self intersecting 3 starlike components
[Kelly and Watson, 1979, Fig. 1]. We give below a direct (analytic) proof in line with our purposes.

Proposition 11. Let G = ⟨ai, a
′
i, aj⟩ denote a full cone in R3 and suppose that there exists a nonzero vector

q ̸≃ aj in ⟨ai, a
′
j⟩ ∩ ⟨a′

i, aj⟩. Let Q = ⟨ai, aj , q⟩. If −ak ∈ Q then Q⋄ ⊆ Σ(ak)
c.

Proof. For clarity we fix {i, j, k} to {1, 2, 3}. It suffices to permute the indices to match any other configu-
ration. We first observe that Q is non-degenerate because q ̸= 0, q ∈ ⟨a′

1, a2⟩ and q ̸≃ a2. By hypothesis, (i)
−a3 = λ1a1 + λ2a2 + λq with λ1, λ2, λ ≥ 0. Moreover, there exist γ1, γ

′
1 ≥ 0 and γ2, γ

′
2 > 0 such that (ii)

q = γ′
1a

′
1 + γ2a2 and (iii) q = γ1a1 + γ′

2a
′
2. Using (i) and (ii), one gets −a3 = λ1a1 + λ2a2 + λ(γ′

1a
′
1 + γ2a2)

or equivalently (λ2 + λγ2)a2 + a3 = λ1(−a1) + λγ′
1(−a′

1). Thus ⟨−a1,−a′
1⟩ ∩ ⟨a2, a3⟩ is not reduced to zero.

By Lemma 7, G⋄ ⊆ (⟨a1, a2, a3⟩ ∪ ⟨a′
1, a2, a3⟩)c and Q⋄ ⊆ Σ(a2, a3)

c. Moreover, let x ∈ ⟨a1, a2, q⟩⋄, that is
x = α1a1 + α2a2 + αq, with α1, α2, α > 0.

• If x ∈ ⟨a1, q, a3⟩ then x = β1a1+βq+β3a3 = α1a1+α2a2+αq with β1, β, β3 ≥ 0. Thus (β−α)q+β3a3 =
(α1 − β1)a1 + α2a2. If β3 = 0 then α2 = 0 because a1, a2, q are independent, contradicting α2 > 0.
Thus β3 > 0 and (iv) −β3a3 = −(α1 − β1)a1 − α2a2 + (β − α)q = β3λ1a1 + β3λ2a2 + β3λq. Using (i)
and (iv) one gets −α2 = β3λ2, a contradiction.

• If x ∈ ⟨a′
2, q, a3⟩ then x = β′

2a
′
2+βq+β3a3 = α1a1+α2a2+αq with β′

2, β, β3 ≥ 0. Thus (β−α)q+β3a3 =
α1a1 + α2a2 − β′

2a
′
2. If β3 = 0. Then β − α cannot be zero since a1, a

′
2, a2 are independent (q ̸≃ a2).

Moreover, if β − α ̸= 0, q ∈ ⟨a1, a
′
2⟩ forces α2 to be zero contradicting α2 > 0. So β3 > 0 and (v)

−β3a3 = −α1a1 − α2a2 + β′
2a

′
2 + (β − α)q = β3λ1a1 + β3λ2a2 + β3λq. Using (iii), one substitutes a′

2

for a linear combination of a2 and q. Thus (i) and (v) lead to −α1 = β3λ1, a contradiction.

Since q ∈ ⟨a′
1, a2⟩, ⟨a1, a

′
2, a3⟩ = ⟨a1, q, a3⟩ ∪ ⟨a′

2, q, a3⟩. Therefore x ̸∈ ⟨a1, a
′
2, a3⟩. Finally, if x ∈ ⟨a′

1, a
′
2, a3⟩

then x = β′
1a

′
1 + β′

2a
′
2 + β3a3 = α1a1 + α2a2 + αq with β′

1, β
′
2, β3 ≥ 0. Using q = γ1a1 + γ′

2a
′
2 = γ′

1a
′
1 + γ2a2,

if γ′
1 = 0 then q ≃ a2, contradicting the hypothesis on q. Thus γ′

1 > 0. If γ′
2 = 0 then G would be

degenerate, also a contradiction. Thus γ′
2 > 0. One then gets (v) α1a1 +α2a2 +αq =

β′
1

γ′
1
(q− γ2a2)+

β′
2

γ′
2
(q−

γ1a1) + β3a3. If β3 = 0 then α1 +
β′
2

γ′
2
γ1 = 0 contradicting α1 > 0. Thus β3 > 0 and using (i) and (v)

one gets −(α1 +
β′
2

γ′
2
γ1) = β3λ1 which is impossible. Thus x ̸∈ ⟨a′

1, a
′
2, a3⟩ and Q⋄ ⊆ Σ(a′

2, a3)
c. Therefore

Q⋄ ⊆ Σ(a2, a3)
c ∩ Σ(a′

2, a3)
c = Σ(a3)

c.

Proposition 5 showed that the cone ⟨ai, a
′
i⟩ enjoys a special property: it cannot be partially covered.

When it is covered, Theorem 1 below gives a necessary condition for a minimal cone ⟨ai, a
′
i, aj⟩ to contain

a hole. Its proof requires the following technical lemma.

Lemma 9. Let i, j, k denote distinct indices in {1, 2, 3}, G = ⟨ai, a
′
i, aj⟩ denote a full cone in R3 such that

−ak ∈ G. Suppose there exist vectors p, q ̸= 0 such that p ∈ ⟨−ai, a
′
i⟩⋄∩⟨a′

j , ak⟩⋄ and q ∈ ⟨ai, a
′
j⟩⋄∩⟨a′

i, aj⟩⋄.
Then −ak ∈ ⟨ai, aj , q⟩.

Proof. For clarity we fix {i, j, k} to {1, 2, 3}. It suffices to permute the indices to match any other con-
figuration. Since p ∈ ⟨−a1, a

′
1⟩⋄ ∩ ⟨a′

2, a3⟩⋄, there exist λ1, λ
′
1 > 0 and λ′

2, λ3 > 0 such that (i) p =
λ1(−a1) + λ′

1a
′
1 = λ′

2a
′
2 + λ3a3. Moreover since q ∈ ⟨a1, a

′
2⟩⋄ ∩ ⟨a′

1, a2⟩⋄, there exist γ′
1, γ2, γ1, γ

′
2 > 0, such

that (ii) q = γ′
1a

′
1 + γ2a2 = γ1a1 + γ′

2a
′
2. We can eliminate a′

2 from (i) and (ii) to get

−γ′
2λ3a3 = (−λ′

2γ1 + γ′
2λ1)︸ ︷︷ ︸

θ1

a1 + (−γ′
2λ

′
1 + λ′

2γ
′
1)︸ ︷︷ ︸

θ′1

a′
1 + λ′

2γ2a2

with θ1, θ
′
1 ≥ 0 (because −a3 ∈ G). Thus

γ′
1

λ′
1
≥ γ′

2
λ′
2
≥ γ1

λ1
and ρ1 = γ′

1λ1 − λ′
1γ1 ≥ 0. We further eliminate a′

1

from (i) and (ii) to get
ρ1a1 + λ′

1γ2a2 + θ′1a
′
2 = −γ′

1λ3a3

Thus −a3 ∈ G ∩ ⟨a1, a2, a
′
2⟩ = ⟨a1, a2, q⟩.
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Theorem 1. Let G = ⟨ai, a
′
i, aj⟩, j ̸= i, denote a minimal cone such that ⟨ai, a

′
i⟩ ⊆ Σ. If G contains a hole

K then, up to swapping ai, a
′
i, there exists a nonzero vector q ∈ ⟨ai, a

′
j⟩ ∩ ⟨a′

i, aj⟩ such that K = ⟨ai, q, aj⟩⋄.

Proof. If −ak or −a′
k is not in G then, by Proposition 10, G ⊆ Σ. By hypothesis G contains a hole so we

can assume that −ak,−a′
k ∈ G. Since ⟨ai, a

′
i⟩ is covered, by Proposition 6, one c-face must intersect ⟨ai, a

′
i⟩

or ⟨−ai, a
′
i⟩⋄ or ⟨ai,−a′

i⟩⋄. In this case, such a c-face must have a′
j as a generator (as both ⟨aj , ak⟩ and

⟨aj , a
′
k⟩ intersect ⟨−ai,−a′

i⟩). With respect to the partition of the space used in the proof of Proposition 10
(cf. Fig 2), and since G is a minimal cone, for ⟨ai, a

′
i⟩ to be covered, a′

j must belong to one of the following
C2, C3, F4, F7, R1, R2. In all cases there exists a nonzero vector q ̸≃ a′

j in ⟨ai, a
′
j⟩ ∩ ⟨a′

i, aj⟩ (when a′
j is in

C2, F4, R2) or in ⟨ai, aj⟩ ∩ ⟨a′
i, a

′
j⟩ (when a′

j is in C3, F7, R1). (Observe that both cases are symmetric by
swapping ai and a′

i.) Suppose the former, and let Q = ⟨ai, aj , q⟩. If a′
j ∈ R2 or a′

j ∈ F4 then q ≃ a′
i

and Q = G. By Proposition 11, G⋄ = Q⋄ ⊆ Σ(ak)
c ∩ Σ(a′

k)
c = Σc. Suppose a′

j ∈ C2, then there exists
p ∈ ⟨−ai, a

′
i⟩⋄ ∩ ⟨a′

j , ak⟩⋄. By Lemma 9, −ak ∈ Q and by Proposition 11, Q⋄ ⊆ Σ(ak)
c. If ⟨a′

j , a
′
k⟩ does not

intersect ⟨−ai, a
′
i⟩⋄ then it intersects ⟨−ai,−a′

i⟩ and therefore G⋄ ⊆ Σ(a′
k)

c by Lemma 7. Thus Q⋄ ⊆ Σc.
Otherwise ⟨a′

j , a
′
k⟩ intersect ⟨−ai, a

′
i⟩⋄ and −a′

k ∈ Q and by Proposition 11, Q⋄ ⊆ Σ(a′
k)

c, Q⋄ ⊆ Σc. As Q⋄

is the maximal hole contained in G, it follows that K = Q⋄ as stated.

Corollary 1. Σ = R3 if and only if, for all i, both ai and a′
i are surrounded. 8

Proof. Necessity is immediate. For sufficiency, we prove the contrapositive, that is if Σc is non-empty then
there exists an index i for which either ai or a′

i is not surrounded. Assume first that Γ ⊂ R3. Then Γ
is a closed proper convex cone of R3 with a boundary that is non-empty. If for all a ∈ Σ0, a ∈ Γ⋄ then
Γ ⊆ Γ⋄ ⊆ Γ. So Γ is both open and closed and its boundary must be empty, a contradiction. 9 Thus, there
exists a vector a ∈ Σ0 such that a is a boundary ray of Γ and therefore a cannot be surrounded (if U is a
neighborhood of a, then U ̸⊆ Γ and since Σ ⊆ Γ, U ̸⊆ Σ). Next, assume that Γ = R3. Since Σ ⊂ R3, by
Proposition 3, there must exist a minimal cone G = ⟨ai, a

′
i, aj⟩, j ̸= i, such that K = G ∩ Σc is non-empty.

By Proposition 5, either ⟨ai, a
′
i⟩⋄ ⊆ Σc or ⟨ai, a

′
i⟩ ⊆ Σ. If the former holds then both ai and a′

i are not
surrounded. If the latter holds, then by Theorem 1, either ai is not surrounded or a′

i is not surrounded.

Corollary 1 strengthens [Garcia et al., 1983, Theorem 4.7] by dropping the strong non-degenerate as-
sumption. The latter result was moreover established using degree theory while in this work we solely used
convex geometry. The statement of Corollary 1 does not hold for n > 3. In [Morris Jr, 1988, Theorem 3],
the author gives an example in n = 4 where both ai and a′

i are (lazily) surrounded for all i without having
a Q-covering. The (counter)example in n = 4 thus shows that it is possible for a minimal cone to have
surrounded generators while still having a hole in it.

Another (more practical) issue with the statement of Corollary 1 is that, in general, surrounding is not
straightforward to transpose algebraically. Under the assumption Γ = R3, in the sequel we alleviate the
need for checking surrounding: we show that self surrounding and lazy covering are enough to characterize
the Q-covering for n = 3. We start by proving some special cases before stating the main theorem (cf.
Theorem 2 below).

Lemma 10. Suppose that ai ∈ ⟨a′
i, aj⟩, i ̸= j. If a′

i is self surrounded or lazily covered then all minimal
cones rooted at ai, a

′
i are covered.

Proof. For clarity we fix (i, j) to (1, 2). (It suffices to permute the indices accordingly for any other con-
figuration.) Since a1 ∈ ⟨a′

1, a2⟩, then ⟨a1, a
′
1, a2⟩ ⊆ ⟨a′

1, a2⟩ ⊆ Σ, ⟨a1, a
′
1, a3⟩ ⊆ ⟨a′

1, a2, a3⟩ ⊆ Σ, and
⟨a1, a

′
1, a

′
3⟩ ⊆ ⟨a′

1, a2, a
′
3⟩ ⊆ Σ. Only G = ⟨a1, a

′
1, a

′
2⟩ is left out. Assume a′

1 is self surrounded. Thus ⟨a1, a
′
1⟩

is covered by Proposition 5. Suppose −a3,−a′
3 ∈ G, then by Proposition 11, G⋄ ⊆ Σ(a3)

c ∩ Σ(a′
3)

c = Σc,
contradicting the self surrounding of a′

1. Thus either −a3 ̸∈ G or −a′
3 ̸∈ G and by Proposition 10, G is

covered as desired. Assume a′
1 ∈ Σ(a1). If a′

1 ∈ ⟨a1, a
′
2, a3⟩, then G ⊆ ⟨a1, a

′
2, a3⟩ ⊆ Σ. The same occurs

if a′
1 ∈ ⟨a1, a

′
2, a

′
3⟩ by swapping a3 and a′

3. If a′
1 ∈ ⟨a1, a2, a3⟩ then either a3 ≃ a′

1 or a3 ∈ ⟨−a1, a
′
1⟩⋄. The

former makes G a c-cone. If the latter occurs, then by Lemma 6, G is covered. The same discussion holds
if a′

1 ∈ ⟨a1, a2, a
′
3⟩ by swapping a3 and a′

3. We thus proved that all minimal cones rooted at a1, a
′
1 are

covered.

Lemma 11. Suppose ai ∈ ⟨aj , ak⟩⋄ with i, j, k distinct. Then all minimal cones rooted at ai, a
′
i are covered.

Proof. For clarity we fix i, j, k to 1, 2, 3 respectively. (It suffices to permute the indices accordingly for any
other configuration.) Since a1 ∈ ⟨a2, a3⟩ then ⟨a1, a

′
1, a3⟩ ⊆ ⟨a′

1, a2, a3⟩ ⊆ Σ and ⟨a1, a
′
1, a2⟩ ⊆ ⟨a′

1, a2, a3⟩ ⊆
Σ. It remains to prove that ⟨a1, a

′
1, a

′
2⟩ and ⟨a1, a

′
1, a

′
3⟩ are covered. We first prove that G = ⟨a1, a

′
1, a

′
2⟩ is

covered. If a2 ≃ a′
2, then G is also covered as discussed above. If a2 ≃ a′

1 then G ⊆ ⟨a′
1, a

′
2, a3⟩ ⊆ Σ. In

addition a2 ̸≃ a1 (because a1 ∈ ⟨a2, a3⟩⋄). Using the minimality of G, we can thus assume in the sequel
that a2 ̸∈ G. Suppose that −a3 ∈ G, then there exists λ1, λ

′
1, λ

′
2 ≥ 0 such that −a3 = λ1a1 + λ′

1a
′
1 + λ′

2a
′
2.

8In [Kelly and Watson, 1979], the authors relied heavily on visualization to characterize 3 × 3 non-degenerate Q-matrices.
Interested readers can find a proof in the same spirit in [Kozaily, 2024, Proposition 4].

9Another way to arrive at a contradiction would be to use the fact that Rn is a connected topological space, thus the only clopen
subsets are Rn and its complement, excluding Γ.
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Moreover there exists γ2, γ3 > 0 such that a1 = γ2a2 + γ3a3. By eliminating a3 from both equations, one
gets

γ2a2 = (γ3λ1 + 1)a1 + γ3λ
′
1a

′
1 + γ3λ

′
2a

′
2

and therefore a2 ∈ G, a contradiction. Thus −a3 ̸∈ G. By hypothesis ⟨a1, a
′
1⟩ ⊆ ⟨a′

1, a2, a3⟩ ⊆ Σ. Thus
Proposition 10 applies and G ⊆ Σ. The exact same discussion holds to prove that ⟨a1, a

′
1, a

′
3⟩ is covered by

swapping the indices 2 and 3.

Theorem 2. Assume Γ = R3. Then Σ = R3 if and only if, all vectors in Σ0 are either self surrounded or
lazily covered. (Observe that necessity holds for any finite dimension.)

Proof. (Necessity) If Σ = R3, then ai must be surrounded for all i. If ai is not self surrounded then
necessarily ai ∈ Σ(a′

i) (otherwise ai cannot be surrounded). The same holds for a′
i. (Sufficiency) We prove

the contrapositive, i.e. if Σ ⊂ R3 then there exists a vector in Σ0 which is not self surrounded nor lazily
covered. The proof is by contradiction. Suppose that Σ ⊂ R3 and all vectors in Σ0 are either self surrounded
or lazily covered. Thus, there exists a hole K. Since Γ = R3, then by Proposition 3 there exists a minimal
cone G = ⟨ai, a

′
i, aj⟩, j ̸= i, such that K = G ∩ Σc is non-empty. By Proposition 5, either ⟨ai, a

′
i⟩⋄ ⊂ Σc

or ⟨ai, a
′
i⟩ ⊂ Σ. If the former holds, then ai (or a′

i) leads to a contradiction as it is not self surrounded nor
lazily covered (cf. the proof of Proposition 5). If the latter holds, by Theorem 1, ai, say, is not surrounded
(otherwise it suffices to swap ai and a′

i in what follows). In particular ai is not self nor lazily surrounded.
Therefore ai ∈ Σ2(a

′
i) (i.e. a face of a c-cone rooted at a′

i). If ai ∈ ⟨a′
i, aj⟩, j ̸= i, then by Lemma 10, G is

covered. If ai ∈ ⟨aj , ak⟩⋄, with i, j, k distinct, then by Lemma 11, G is also covered. Both cases lead to a
contradiction since K is non-empty. Thus K does not exist and Σ = R3.

Unlike Corollary 1, Theorem 2 is amenable to an algebraic characterization of Q-matrices for n = 3 as
we shall detail in the next section.

5 Algebraic Characterization

Theorem 2 characterizes the Q-covering via three requirements: (1) Feasibility or S-matricity (i.e. Γ = R3),
(2) self surrounding (i.e. the Q-covering of a⊥

i ), and (3) lazy covering (i.e. ai ∈ Σ(a′
i)). We detail next how

each requirement can be equivalently translated into sign conditions on the subdeterminants of the matrix
( a1 a2 a3 a′

1 a′
2 a′

3 ).

5.1 S-matricity

Proposition 1 provides an effective mean to characterize S-matrices for n = 3.

Corollary 2. Let Γ = ⟨g1, . . . , g6⟩. Then Γ = R3 if and only if

• either there are 4 vectors such that R3 = ⟨gi1 , . . . , gi4⟩,
• or there are 3 vectors such that ⟨gi1 , gi2 , gi3⟩ is a plane that separates two other vectors gi4 and gi5 ,

• or there are 2 vectors such that ⟨gi1 , gi2⟩ is a line and the plane g⊥i1 is equal to ⟨π(gi3), . . . , π(gi6)⟩,
where π denotes the orthogonal projection onto the hyperplane g⊥i1 .

Proof. Sufficiency is immediate. For necessity, by Proposition 1, there exists 1 ≤ m ≤ 3 such that m + 1
vectors among g1, . . . , g6 span a flat of dimension m. The provided conditions enumerate all cases (m = 3
first, then m = 2, and finally m = 1).

When the four cones ⟨g1, g2, g3⟩, ⟨g2, g3, g4⟩, ⟨g1, g3, g4⟩, and ⟨g1, g2, g4⟩ are full and have the same ori-
entation, then Γ = ⟨g1, g2, g3, g4⟩ = R3. The orientation can be retrieved using the sign of the determinant
of the matrix formed by the generators. For instance, the orientation of the cone ⟨g1, g2, g3⟩ is given by the
sign of det( g1 g2 g3 ). However, while the cone, as a geometric object, is invariant under any permutation
of its generators, the sign of the determinant is not. One thus has to be careful when ordering the vectors
to get a coherent orientation of the involved cones [Jeanneret and Lines, 2014, Section 18]. We do this by
fixing a global order of the involved vectors and making sure that the orientation of the common facet of
any two adjacent cones is inverted w.r.t. the fixed global order. For instance the cones spanned by the
lists {g1, g2, g3} and {g2, g3, g4} are adjacent cones having in common {g2, g3}. With respect to the global
ordering g1, g2, g3, g4, the lists {g1, g2, g3} and {g3, g2, g4} are coherently oriented.

Similarly, when R3 is nonnegatively spanned by five vectors, assuming any 4 of them do not span the
space, then three of them span a plane that separates the two remaining ones. This implies that the
space is partitioned into six distinct cones that have the same orientation (i.e. all pairs of adjacent cones
are coherently oriented). For a list of 5 vectors, we misuse the ⊕ notation (cf. Def. 2) and write Γ as
{g1, g2, g3}⊕{g4, g5}, where the first three vectors span the plane separating the two remaining ones. Finally,
when the six vectors are required to span R3, they must form 3 lines in a generic position (no one is in the
plane formed by the two others). This implies that the space is partitioned into eight distinct cones that
have the same orientation. In this case, we write Γ as {g1, g2} ⊕ {g3, g4} ⊕ {g5, g6} where each pair form a
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Algorithm 1: Γ4: R3 = ⟨g1, g2, g3, g4⟩ .
Data: Four symbolic vectors g1, . . . , g4.

1 {d1, d2, d3, d4} ← {det( g1 g2 g3 ), det( g2 g1 g4 ), det( g3 g4 g1 ), det( g4 g3 g2 )}
2 return (

∧4
i=1 di > 0) ∨ (

∧4
i=1 di < 0)

Algorithm 2: Γ5: R3 = ⟨g1, . . . , g5⟩ = {g1, g2, g3} ⊕ {g4, g5} .
Data: Five symbolic vectors g1, . . . , g5.

1 {d1, d2, d3} ← {det( g1 g2 g4 ), det( g2 g3 g4 ), det( g3 g1 g4 )}
2 {d4, d5, d6} ← {det( g1 g3 g5 ), det( g3 g2 g5 ), det( g2 g1 g5 )}
3 return (

∧6
i=1 di > 0) ∨ (

∧6
i=1 di < 0)

line. The notation here is suggestive of the Q-covering problem. In fact it is a very special case where one
gets a partition of the space. Equivalently, ( g1g3g5 )−1( g2g4g6 ) is a P-matrix.

We say that a vector is symbolic if all its components are non-fixed reals or variables or symbols. For in-
stance the vector (m1,m2,m3) is symbolic whereas (1, 0, 0) is not. Algorithm 1 makes explicit the conditions
that the components of 4 vectors have to satisfy to span R3. Algorithm 2 makes explicit the conditions that
a list of 5 vectors have to satisfy to span R3 assuming the first three vectors span a plane and the remaining
two vectors are separated by that plane. To avoid checking whether the first three vectors actually form
a plane, the algorithm relies on partitioning the space into 6 coherently oriented cones. The so obtained
conditions may thus have some redundancy with the ones obtained from Algorithm 1. Finally, Algorithm 3
makes explicit the conditions that a list of 6 vectors have to satisfy to span R3 (where all the vectors are
required). As discussed earlier, we also implement the partition of the space into 8 cones for simplicity at
the cost of redundancy with the conditions provided by the two other algorithms.

Given 6 symbolic vectors g1, . . . , g6, one can characterize Γ = ⟨g1, . . . , g6⟩ = R3 as follows: apply Algo-
rithm 1 to any sublist of four vectors among the ones provided, apply Algorithm 2 to all distinct pairs of
sublists of 3 and 2 vectors, and finally apply Algorithm 3 to all distinct tuples formed each by three pairs of
vectors.

5.2 Self Surrounding

By Proposition 8, self surrounding for n = 3 amounts to characterizing the Q-covering for n = 2. The
following theorem is the analogue of Corollary 1 for dimension 2. It relies solely on surrounding which is
easy to characterize for this dimension, alleviating the need for feasibility.

Theorem 3. Σ = R2 if and only if, for all i, ai and a′
i are surrounded.

Proof. Necessity is immediate. For sufficiency, we prove the contrapositive. Suppose Σ ⊂ R2. If Γ ⊂ R2

then by [Rockafellar, 1997, Corollary 18.3.1], there exists a vector in Σ0 which is a face of Γ. Since Σ ⊆ Γ,
such a vector cannot be surrounded. Next, suppose that Γ = R2. By proposition 3, there must exist a
minimal cone G = ⟨ai, a

′
i⟩ such that G∩Σc is non-empty and, by proposition 5, G⋄ ⊆ Σc proving that both

ai and a′
i are not surrounded.

Proposition 12. Suppose n = 2 and let i, j denote two distinct indices. Let v̄ denote the orthogonal
projection of v ∈ R2 onto a⊥

i . Then ai is surrounded if and only if it is either self or lazily surrounded or
ai ≃ aj and the pair {ā′

i, ā
′
j} form a 1-dimensional Q-covering or ai ≃ a′

j, and the pair {ā′
i, āj} form a

1-dimensional Q-covering.

Proof. Sufficiency is immediate using Proposition 8. For necessity, assume that ai is not self nor lazily
surrounded. Thus ai ∈ Σ1(a

′
i). If ai ≃ a′

i, then Σ reduces to ⟨ai, aj⟩ ∪ ⟨ai, a
′
j⟩ and ai is surrounded if and

only if it is self surrounded, contradicting the assumption. So ai ̸≃ a′
i. If ai ≃ aj and aj ≃ a′

j then the
surrounding is impossible as Σ reduces to one cone having ai as generator. If aj ̸≃ a′

j , then ai must be
surrounded by ⟨ai, a

′
j⟩∪⟨a′

i, aj⟩ which is effectively equivalent to checking that {ā′
i, ā

′
j} form a 1-dimensional

Q-covering by Proposition 8. The same discussion holds when ai ≃ a′
j and one needs to check that {ā′

i, āj}
form a 1-dimensional Q-covering.

Proposition 12 is amenable to an algebraic characterization of the Q-covering problem in n = 2. For lazy
surrounding, checking if ai ∈ ⟨a′

i, aj⟩⋄, j ̸= i, amounts to simply checking that the determinants of the three
matrices

(
a′
i aj

)
,
(
a′
i ai

)
, and

(
ai aj

)
have the same sign. Likewise, checking if ai is self surrounded

amounts to verifying that the determinants of
(
ai aj

)
and

(
ai a′

j

)
, j ̸= i, have opposite signs. We observe

that this condition should not be confused with ai ∈ ⟨aj , a
′
j⟩⋄, which is only a special case (ai needs not

be in the interior of ⟨aj , a
′
j⟩ to be self surrounded). As stated in Proposition 8, self surrounding can be

equivalently checked by projecting on the orthogonal space of ai and appealing to the following simple fact.
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Algorithm 3: Γ6: R3 = ⟨g1, . . . , g6⟩ = {g1, g2} ⊕ {g3, g4} ⊕ {g5, g6} .
Data: Six symbolic vectors g1, . . . , g6.

1 {d1, d2, d3, d4} ← {det( g1 g3 g5 ), det( g3 g2 g5 ), det( g2 g4 g5 ), det( g4 g1 g5 )}
2 {d5, d6, d7, d8} ← {det( g1 g4 g6 ), det( g4 g2 g6 ), det( g2 g3 g6 ), det( g3 g1 g6 )}
3 return (

∧8
i=1 di > 0) ∨ (

∧8
i=1 di < 0)

Algorithm 4: Surrounding of ai (n = 2).

Data: Two pairs {a1, a′1} {a2, a′2} of vectors in R2.
1 {u1, u2} ← ai
2 u⊥ ← {−u2, u1} ▷ Orthogonal vector if ai ̸= 0

3 c1 ← (u⊥.aj)(u
⊥.a′j) < 0 ▷ Self surrounding

4 c2 ← det( a′
i ai ) det( ai aj ) > 0 ∨ det( a′

i ai ) det( ai a′
j ) > 0 ▷ Lazy surrounding

5 c3 ← det( ai aj ) = 0 ∧ ai.aj > 0 ∧ (u⊥.a′i)(u
⊥.a′j) < 0 ▷ ai ≃ aj

6 c′3 ← det( ai a′
j ) = 0 ∧ ai.a

′
j > 0 ∧ (u⊥.a′i)(u

⊥.aj) < 0 ▷ ai ≃ a′j
7 return c1 ∨ c2 ∨ c3 ∨ c′3

Theorem 4. Let a, a′ ∈ R. The pair {a, a′} defines a Q-covering of R if and only if aa′ < 0, providing
thereby a partition for R.

Proof. The cones generated by a and a′ cover, or more precisely partition, R if and only if a, a′ are both
nonzero and have opposite signs.

Remark 4. Observe that, for n = 1, Γ and Σ coincide and that a is surrounded if and only if a ̸= 0.
Interestingly, Corollary 1 does not hold for n = 1 since a and a′ can be both (lazily) surrounded (for instance
when a′ ≃ a) and Σ = Γ ⊂ R. Intuitively, when a′

i is lazily surrounded, it is somehow ‘redundant’ with ai

(with a′
i ≃ ai being the simplest–and perhaps strongest–form of redundancy). So when a′

i is redundant for
all i, Σ is unlikely to be covering.

Algorithm 4 outputs the set of conditions required for ai to be surrounded according to Proposition 12.
When ai is identically zero, all conditions fail as desired (ai = 0 cannot be surrounded). Applying the
algorithm to the four involved vectors outputs an algebraic characterization for Σ to be covering for n =
2; we will denote it in the sequel by QCovering[{a1, a

′
1}, {a2, a

′
2}]. In particular, one gets the following

characterization for Q-matrices in dimension 2.

Theorem 5. The matrix
(m1 m2
m3 m4

)
is a Q-matrix if and only if

(m1 < 0 ∧m2 > 0 ∧m3 > 0 ∧m4 < 0 ∧m1m4 −m2m3 < 0)

∨ (m1 < 0 ∧m2 > 0 ∧m3 < 0 ∧m4 > 0 ∧m1m4 −m2m3 > 0)

∨ (m1 = 0 ∧m2 > 0 ∧m3 < 0 ∧m4 > 0)

∨ (m1 > 0 ∧m3 = 0 ∧m4 > 0)

∨ (m1 > 0 ∧m2 ≥ 0 ∧m4 > 0)

∨ (m1 > 0 ∧m2 < 0 ∧m3 > 0 ∧m1m4 −m2m3 > 0)

∨ (m1 > 0 ∧m2 < 0 ∧m3 < 0 ∧m1m4 −m2m3 > 0) .

(3)

For the sake of comparison, we give below the relatively much simpler conditions for M to be a P-matrix
requiring that all the principal minors of M to be positive:

m1 > 0 ∧m4 > 0 ∧m1m4 −m2m3 > 0 .

One observes that P-matrices are a special case of Q-matrices since m1 > 0 ∧m4 > 0 ∧m1m4 −m2m3 > 0
implies (without being equivalent to) the last four conjunctions of (3).

Remark 5. The fact that Theorem 5 involves only sign conditions on the subdeterminants of the matrix
M is not a coincidence. In fact, Algorithm 4 can be equivalently stated in terms of sign conditions of the
subdeterminants of the matrix ( a1 a2 a′

1 a′
2 ). Indeed, on one hand, the scalar product u⊥.aj in Line 3 is equal

to det( ai aj ). The same holds for the other scalar products involving u⊥. On the other hand, for v, w ∈ R2,
the equivalence v ≃ w characterized by det( v w ) = 0 ∧ v.w > 0 in Algorithm 4, can be reformulated as

(det( v w ) = 0) ∧ (v1w1 > 0 ∨ v2w2 > 0), (4)

making explicit the subdeterminants. Therefore, the conditions c3 (Line 5) and c′3 (Line 6) are also amenable
to sign conditions on appropriate subdeterminants.
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Algorithm 5: SelfSurrounding: self surrounding of ai (n = 3).

Data: Three pairs {a1, a′1} {a2, a′2} {a3, a′3} of vectors in R3.
1 {u1, u2, u3} ← ai

2 c← πu =
(
u2 −u1 0
u3 0 −u1

)
∨ πu =

(
u2 −u1 0
0 u3 −u2

)
∨ πu =

(
0 u3 −u2
u3 0 −u1

)
3 return c ∧ QCovering[{πuaj , πua

′
j}, {πuak, πua

′
k}]

To get an algebraic characterization for self surrounding for n = 3, in addition to the aforementioned
characterization of the Q-covering problem for n = 2, we further need means to perform the projection on
the orthogonal space of a vector u = (u1, u2, u3) ̸= 0. To do so, we use one of the following generic projectors:

πu =

(
u2 −u1 0
u3 0 −u1

)
, or πu =

(
−u2 u1 0
0 u3 −u2

)
, or πu =

(
0 −u3 u2

−u3 0 u1

)
. (5)

Setting u to ai, one gets that ai is self surrounded if and only if R2 ⊆ {πuaj , πua
′
j}⊕{πuak, πua

′
k} as shown

in Algorithm 5. Notice that, when u = 0, πu = 0 and the algorithm returns False as expected (the vector 0
cannot be self surrounded).

Lemma 12. Let u, v, w ∈ R3 and let πu denote a generic projector (cf. Eq. (5)). Deciding the sign
of det( πuv πuw ) and the equivalence πuv ≃ πuw reduce to sign conditions on the subdeterminants of the
matrix ( u v w ).

Proof. Suppose (a similar discussion holds for the other projectors)

πu =

(
u2 −u1 0
u3 0 −u1

)
,

s1 = u2v1 − u1v2 s3 = u2w1 − u1w2

s2 = u3v1 − u1v3 s4 = u3w1 − u1w3

Then, one has

πuv =

(
s1
s2

)
, πuw =

(
s3
s4

)
, det( πuv πuw ) = u1 det( u v w ),

Thus, as mentioned in Remark 5, Eq. (4), the condition

det( πuv πuw ) = 0 ∧ (πuv).(πuw) > 0,

becomes equivalent to
u1 det( u v w ) = 0 ∧ (s1s3 > 0 ∨ s2s4 > 0),

making therefore explicit the sign conditions on the subdeterminants of ( u v w ).

As already observed, self surrounding for n = 3 reduces to a planar Q-covering problem (Proposition 8)
which is in turn equivalent to four surrounding problems for n = 2 (Theorem 3), each characterized in Propo-
sition 12, and implemented in Algorithm 4. Lemma 12 is the last ingredient to show that self surrounding
for n = 3 reduces to sign conditions on the subdeterminants of the matrix ( a1 a2 a3 a′

1 a′
2 a′

3 ).

5.3 Lazy Covering

To get an algebraic characterization for the Q-covering problem for n = 3, we still need to translate the
condition ai ∈ Σ(a′

i) into an equivalent explicit set of constraints on the involved vectors. This task reduces
to checking whether a vector belongs to a cone spanned by three vectors. First, the equivalence relation u ≃ v
is encoded as u× v = 0∧u.v > 0 where u× v denotes the cross product. To check whether u ∈ ⟨a1, a2, a3⟩⋄,
we simply verify that det

(
a1 a2 a3

)
,det

(
u a2 a3

)
,det

(
a1 u a3

)
,det

(
a1 a2 u

)
are all positive

or all negative (the ordering of the column vectors of the matrices ensure the coherence of the orientation; cf.
the discussion at the beginning of Section 5); We can alternatively regard lazy surrounding as a Q-covering
problem as stated in Proposition 9. It remains to check whether u belongs to the faces of the cone, namely
cones of the form ⟨v, w⟩. We do so by checking whether u is equivalent to the generators, v, w, or it belongs
to the relative interior of ⟨v, w⟩ as detailed in Algorithm 6. Finally, Algorithm 7 returns an equivalent
characterization for a′

i to be in a c-cone rooted at ai.

Remark 6. The conditions of Algorithm 6 are also amenable to equivalent conditions on the sign of the
subdeterminants of the matrix ( u v w ). For u ≃ v, the components of the cross product are subdeterminants
by definition. Moreover, the condition u × v = 0 ∧ u.v > 0 is equivalent to u × v = 0 ∧ (u1v1 > 0 ∨ u2v2 >
0 ∨ u3v3 > 0), making explicit the subdeterminants. For condition c3 (Line 3), one first observes that
det( v w v×w ) > 0 is equivalent to v × w ̸= 0. 10 When in addition det( u v w ) = 0, u = αv + βw for
some scalars α, β, and det( v u v×w ) = β det( v w v×w ) (the determinant is multilinear and alternating).
Thus, assuming v × w ̸= 0, det( v u v×w ) > 0 if and only if β > 0. As u.v⊥ = βw.v⊥, one can then
reformulate β > 0 as πvu ≃ πvw, which has been shown in Lemma 12 to reduce to sign conditions on the
subdeterminants of the matrix ( u v w ). The same discussion holds for det( u w v×w ) > 0. Summing up,
condition c3 of Algorithm 6 becomes equivalent to det( u v w ) = 0 ∧ v × w ̸= 0 ∧ πvu ≃ πvw ∧ πwv ≃ πwu.
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Algorithm 6: InFace: symbolic characterization of u ∈ ⟨v, w⟩ (n = 3).

Data: Three symbolic vectors of dimension 3.
1 c1 ← u× v = 0 ∧ u.v > 0 ▷ u ≃ v
2 c2 ← u× w = 0 ∧ u.w > 0 ▷ u ≃ w
3 c3 ← det( u v w ) = 0 ∧ det( v w v×w ) > 0 ∧ det( v u v×w ) > 0 ∧ det( u w v×w ) > 0 ▷ u ∈ ⟨v, w⟩⋄
4 return (u = 0) ∨ c1 ∨ c2 ∨ c3

Algorithm 7: InCone: symbolic characterization of a′i ∈ ⟨ai, aj , ak⟩ (n = 3).

Data: Four symbolic vectors of dimension 3.
1 {d1, d2, d3, d4} ← {det( ai aj ak ), det( a′

i aj ak ), det( ai a′
i ak ), det( ai aj a′

i )}
2 c1 ←

(∧4
i=1 di > 0

)
∨
(∧4

i=1 di < 0
)

▷ Topological interior
3 c2 ← InFace[a′i, {ai, aj}] ∨ InFace[a′i, {ai, ak}] ∨ InFace[a′i, {aj , ak}] ▷ Faces
4 return (a′i = 0) ∨ c1 ∨ c2

As an immediate corollary of Remark 5, Lemma 12, and Remark 6, we get the following nontrivial result
which, until now, was considered an open problem to the best of our knowledge.

Theorem 6. For n = 3, the Q-covering is characterized by sign conditions on the subdeterminants of
the matrix ( a1 a2 a3 a′

1 a′
2 a′

3 ). In particular, deciding if a 3-by-3 matrix M is a Q-matrix reduces to sign
conditions on the subdeterminants of M effectively constructed by Algorithms 1–7.

It’s worth mentioning, however, that [Garcia et al., 1983] showed that for super-regular matrices (cf.
Section 5.4), when the conical degree of the piecewise linear mapping associated to M is not zero, M is
Q-matrix. While the conical degree is determined using the signs of the subdeterminants of M , it was
unclear whether the signs of subdeterminants were enough for the cases where the conical degree is zero,
and more generally, for matrices that are not super-regular (for which the concept of conical degree is not
well defined).

All algorithms were implemented to arrive at an algebraic characterization of the Q-covering problem
when n = 3. 11 When Σ0 = {e1, e2, e3,−M1,−M2,−M3} for a matrix M = (M1 M2 M3 ), one gets a list
of sign conditions on the subdeterminants of M for M to be a Q-matrix. Checking if a given instance is a
Q-matrix is thus performed in constant time: it suffices to substitute the values and check the conditions.
For instance, for

M =

m1 m2 m3

m4 m5 m6

m7 m8 m9

 , (6)

any specialization of m1, . . . ,m9 that satisfies

m1 > 0 ∧m2 = 0 ∧m3 = 0 ∧m5 < 0 ∧m6 > 0 ∧m8 > 0 ∧m9 < 0 ∧m5m9 −m6m8 < 0

is a Q-matrix (which is clearly not a P-matrix as m5 < 0). Such a characterization turned out to be
very useful to automatically find counter examples to sharpen our intuitions and help answering certain
conjectures as we shall see next.

5.4 Generating Special Q-matrices

[Karamardian, 1972] drew a specific attention to R0 matrices (also known as super-regular matrices) for
which LCP(0,M) has a unique solution. It subsequently played an important role in LCP theory.
[Aganagic and Cottle, 1979] proved later that among P0 matrices (i.e. matrices for which all principal minors
are nonnegative), the subclasses of Q-matrices and R0-matrices are equivalent.

We wanted to know whether a Q-matrix that is not super-regular exists for n = 3. It was previously
known [Kelly and Watson, 1979, p. 177] that Q-matrices with flat c-cones are possible for n = 3. We were
thus interested in finding a Q-matrix with non-pointed and non-flat c-cones. To do so we fixed a′

2 to −e1
and found that the following conditions (among others) on the subdeterminants of M (cf. Eq. (6)) have to
hold

m1 > 0 ∧m3 < 0 ∧m6 < 0 ∧m7 > 0 ∧m9 < 0 ∧m1m9 −m3m7 > 0 ∧m4m9 −m6m7 < 0.

The following instance is a particular case.

10Indeed, det( v w v×w ) = ∥v×w∥2 for any vectors v, w. Requiring the strict inequality ensures that the relative interior ⟨v, w⟩⋄
is not empty.

11We used Mathematica. Notebook available here https://gitlab.inria.fr/kghorbal/qmatrices.
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Example 1. Consider −M1 = (−2,−4,−3), −M2 = −e1, and −M3 = (1, 1, 1). The c-cones ⟨e1,−M2, e3⟩
and ⟨e1,−M2,−M3⟩ are non-pointed and therefore the following 3-by-3 matrix M is not super-regular. It is
however a Q-matrix. 12

M =
(
M1 M2 M3

)
=

2 1 −1
4 0 −1
3 0 −1

 .

We can also easily check that there are no Q-matrices of the form ( v e1 e2 ) for any vector v (which would
have lead to 4 degenerate c-cones that are non-pointed and non-flat).

[Murty, 1972] gave the symmetric matrix MMurty (see below) for which all vectors in Σ0 are both self
and lazily surrounded. Using the algebraic characterization presented in this work, we checked that when
all vectors are lazily surrounded, then they are necessarily also self surrounded (the converse isn’t true,
it suffices to consider any P-matrix). Enforcing lazy surrounding of all vectors in Σ0 is unrelated to the
symmetry of the matrix M . It turns out that Murty’s example is an instance of the following conjunction:

m1 < 0 ∧m3 > 0 ∧m4 > 0 ∧m5 < 0 ∧m6 > 0 ∧m7 > 0 ∧m8 > 0 ∧m9 < 0

∧m1m5 −m2m4 < 0 ∧m1m9 −m3m7 < 0 ∧m5m9 −m6m8 < 0 . (7)

We give below several non symmetric instances.

Example 2. The following two matrices are Q-matrices for which all vectors in Σ0 are both self and lazily
surrounded (the space is covered twice by the c-cones). They both satisfy the conditions of Eq. (7).

MMurty =

−1 2 2
2 −1 2
2 2 −1

 , M =

−5 4 3
2 −1 1
2 2 −1

 .

Moreover, there are precisely 3 additional conjunctions, each involving strict sign conditions on the subde-
terminants of M , such that all vectors in Σ0 are both self and lazily surrounded. We give below one instance
for each such conjunction (the sign conditions could be retrieved from the examples).−7 5 1

−6 4 1
−8 8 1

 ,

 3 −9 1
4 −10 1
16 −16 1

 ,

 7 5 −1
12 2 −1
8 4 −1

 .

Conclusion

We believe that using minimal cones to better understand holes is worth pursuing. An important question
with this regard is whether the particular case of almost c-cones is all one needs in dimensions ≥ 4. The
approach is also appealing as it doesn’t require particular assumptions on degeneracy (but does assume
feasibility). It thus provides an interesting geometric alternative to degree theory. For n ≤ 3, one gets in
addition an algebraic characterization involving only the signs of the subdeterminants of the involved matrix.
So far, however, no particular pattern emerged from these conditions (unlike the elegant characterization for
P-matrices requiring only the positivity of principal minors). From a computational standpoint, although
getting an algebraic characterization was relatively easy (the presented algorithms are straightforward to
implement), rewriting the so obtained condition into conjunctions on the signs of subdeterminants was
computationally involved as many subcases are either redundant or empty. It would be really interesting
to try to push the same reasoning for dimension n = 4 to get yet an additional hint about the polynomials
involved as well as potential patterns on their sign conditions. We do believe that algebraic characterizations
are really helpful to sharpen our intuitions and avoid pitfalls by automatically generating instances with the
help of a computer.
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