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ABSTRACT

Given a polynomial ordinary differential equation (ODE), we devise
generic polynomial reduction algorithms to automatically inves-
tigate the intertwined relationship between the total degree of
(nontrivial) Darboux polynomials and the polynomials defining the
ODE. By generic we mean that both the coefficients and the multi-
degree of the involved polynomials are symbolic. We use Newton
polytopes as a light-weight abstraction to select optimal weight
monomial orders improving the efficiency of the involved computa-
tions. The method works by inferring necessary conditions on both
the coefficients and the multidegree for the polynomial to be Dar-
boux. These conditions are then used, via constants’ propagation,
to restrict the shape of the generic candidate, pinpointing which
monomials ought to be preserved by removing the superfluous
ones. In some relevant cases, we are able to automatically prove
the nonexistence of (nontrivial) Darboux polynomials providing a
new toolbox to prove and formally certify that some limit cycles
are not algebraic.
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1 INTRODUCTION

In his seminal work [6, 811, pp 71-73], Gaston Darboux introduced al-
gebraic particular integrals, known today as Darboux polynomials,
as a mean to construct (rational) general integrals (i.e. first inte-
grals or conserved quantities) for polynomial ODEs (equivalently,
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polynomial vector fields) of the standard form: !
X‘i:ﬁ(xl).,.,xn), l:1,,n

where fi, ..., fn are multivariate polynomials in x1,...,x, over
some field and x; denotes the derivative of x; with respect to an
independent variable ¢. In the sequel, we represent such a system
concisely as x = f(x). From a differential algebraic perspective, the
ODE defines a polynomial derivation D = 3| f;d;, acting on the
ring of polynomials where 9; denotes the partial derivative with
respect to x;. 2 Darboux polynomials, which we now define, are
the main object of interest in this paper.

Definition 1.1 (Darboux polynomial). Let D denote a polynomial
derivation. A polynomial p is Darboux for D, or simply Darboux
when D is clear from the context, whenever D(p) = gp for some
polynomial g, called the cofactor of p. (Equivalently, p is Darboux if
and only if the principal ideal (p) is a differential ideal.) Polynomials
of total degree zero are trivially Darboux.

Computation of Darboux polynomials is a central problem in
the Prelle-Singer procedure for computing elementary first integrals
of planar systems of polynomial ODEs [12], which yields a sys-
tematic method for computing elementary closed-form solutions
(whenever these exist) to an important class of ordinary differential
equations. Owing to this important application, algorithms for gen-
erating Darboux polynomials have received considerable attention
in computer algebra. More recently, Darboux polynomials have
found application in the area of formal safety verification of cyber-
physical systems, where the problem of their automatic generation
is encountered in the broader context of searching for invariant
(and positively invariant) sets [7, 9, 13, 15]. Geometrically, the zero
set of a Darboux polynomial defines an invariant set (cf. [11, p.
147]).

THEOREM 1.2. Letx = f(x) denote a polynomial ODE and let x(t),
t € I C R, denote its unique solution for a given initial condition
x(0). If p is a Darboux polynomial for the given ODE then the zero
set of p, {x | p(x) = 0}, is invariant under the flow of the system, i.e.
if p(x(0)) = 0 then p(x(t)) = 0 for all t € I. (In particular, trivial
Darboux polynomials correspond to trivial invariant sets, namely the
empty set and the entire space.)

Remark 1.3. The condition D(p) € (p) is only a sufficient con-
dition for the invariance of the zero set of p; over the complex
numbers, when p is square-free, the equivalence holds [3]. Over
the reals, however, the radical ideal membership does not provide
a necessary condition for the invariance of the set of real roots of
p and it is instead necessary to consider the real radical ideal [7,
Theorem 1].

A modern account of Darboux integrability theory can be found in [8, 17].
2D is a special case of the Lie derivative with respect to the vector field defined by f.
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Darboux generation algorithms (e.g. [1, 7, 10]) are semi-decision
procedures enumerating all Darboux polynomials up to a certain
fixed bound on the total degree. The bound is eventually increased
until finding a (not necessarily irreducible) Darboux polynomial or
reaching memory and/or time limits. Theoretically, the existence
of a bound on the total degree of irreducible Darboux polynomials
is, as of today, an open problem when n > 3 [8, p. 49, Corollary
2.2]. Even when such theoretical bound exists, it is easily seen
that it depends non trivially not only on the total degrees of the
polynomials f; but also on their coefficients. For instance, consider
the following planar linear (decoupled) ODE, where p # 0:

1)

is an

X‘l = pxi, X‘z =X2 .

, PR 1 I
When p is a positive integer, the polynomial p = x1 + x;

irreducible Darboux polynomial of total degree y. Any generation
procedure is unlikely to succeed in finding p (which involves both
x1 and x2) unless it reaches y which can be arbitrarily big. In this
work, we precisely tackle this problem: we present a procedure that
attempts to make explicit the potential dependencies between the
total degree of Darboux polynomials and the polynomials defining
the ODE.

Contributions. Given a polynomial derivation D, we devise a
procedure to infer necessary conditions for a generic polynomial
ansatz p to be Darboux. By generic we mean that both the coeffi-
cients and the multidegree of p are undetermined (sec. 3). We adapt
the standard division algorithm to the specific reduction of D(p)
w.r.t. p and show how such polynomials can be encoded and ma-
nipulated automatically by a computer program (sec. 4). We discuss
the sensitivity of the division to the chosen monomial order and
propose a light-weight abstraction based on Newton polytopes to
select weight monomial orders that minimize the size of the quo-
tients (sec. 5). Finally, we show how to exploit selected coefficients
of the remainder to remove superfluous monomials from p and
infer necessary conditions on its multidegree d in a principled way
(sec. 6). Throughout the paper, we use the Van der Pol dynamics
(example 4.1) as a running example to showcase the proposed al-
gorithms and techniques. In particular, we provide an alternative,
fully automated, proof that its limiting cycle is not algebraic for
any field (theorem 6.7).

2 PRELIMINARIES

Let x = (x1,...,x,) denote a set of variables and a = (a1, ..., ayn)
be a vector of natural numbers. We use the shorthand notation x*
to denote the multivariate monomial [T}, x{*. Given a monomial
order, we use the symbol < to compare monomials and denote by
LT(p), LM(p), and LC(p), the leading term, monomial and coeffi-
cient of a polynomial p = )}, agx%, respectively. When LC(p) = 1,
we say that p is monic. The exponent d = (dy, ..., dn) of LM(p) is
called the multidegree of p. The coefficients a, of p are assumed to
range over some fixed base field of characteristic zero (e.g. R or C).
Given a positive weight vector w € N", the weight of a monomial
x% is |alw = )}; wia;. In particular, when w = (1,..., 1), the weight
coincides with the so-called degree of x%, that is |a| = }; @; (we
drop the index w in this case).

The set {a € N" | a5 # 0} will be called the support or shape
of p. Unless a, is known to be zero, we consider that @ belongs to
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the support of p. The convex hull of the support of a polynomial is
known as its Newton polytope [16]. The total weight of p is defined
as the maximum of |a|,, when « ranges over the support of p.
In particular, deg(p), the total degree of p, is the maximum of
|a| over the support of p. Unlike the univariate case, the equality
deg(LM(p)) = deg(p) doesn’t hold in general for every monomial
order.

The division algorithm [5, Chapter 2] over multivariate polyno-
mials takes as input a polynomial 4 and an ordered list of polynomi-
als p1,. .., pm and produces an ordered list of quotients q1, ..., qm
and a remainder, or normal form, r with the property that no mono-
mial in r is divisible by LM(p1), ..., LM(p;,). In this work, we are
interested in the division by only one polynomial p. The depen-
dence of the division algorithm to the monomial order remains,
however, even for this simpler case (since the leading term of p
depends itself on such order). For instance, consider the polynomial
h= xfxz + xlxg + x%, and the divisor p = x% + xg — 1. The reduc-
tions below are w.r.t. the degree lexicographic monomial order with
x1 > x2 and x2 > x1, denoted DLexj2 and DLexy; respectively:

2

2 3
h =pLex,, x2p + (xlxz Xt Xyt x2)

2

h =pLex,, (1+x1)p+ (xzxf —xf —xp+x1+1) .

Remarkably, when the remainder is zero, the reduction no longer
depends on the chosen monomial order. This observation follows
from [5, §6, Corollary 2] and the fact that {p} is a Grébner basis of
the principal ideal {(p) for any monomial ordering.®> As an imme-
diate consequence, we get the following useful facts for Darboux
polynomials.

ProPOSITION 2.1. Let D denote a polynomial derivation. Then p
is a Darboux polynomial for D if and only if the remainder of D(p)
w.r.L p is zero for any monomial order. In particular, if q,q' are the
quotients of the reduction w.r.t. two distinct monomial orders, then
q9=4"

Thus, if one is able to compute the remainder r of D(p) w.r.t. a
generic polynomial p, then the equation r = 0 gives a necessary and
sufficient condition for p to be Darboux. Moreover, if one obtains
two quotients for distinct monomial orders, then equating these two
quotients leads to necessary conditions for p to be Darboux. While
these observations might seem obvious once stated, the former
was so far exclusively exploited to search for Darboux polynomials
with a fixed total degree and the latter was completely overlooked
(cofactors are for instance not used at all in [10]).

3 APPROACH AND INTUITIONS

Given a polynomial derivation D, we shall see in the upcoming
sections how to automate (partially or fully) the following steps:

(1) Encode a generic ansatz p = )., agx®* where the a, as well
as the multidegree d of p are symbolic expressions.

(2) Perform the division of D(p) w.r.t. p to get a quotient q and
a remainder r. (Sec 4)

(3) Exploit “optimal” monomial orders to simplify both g and r
for p to be Darboux. (Sec 5)

30ne doesn’t need Grobner theory to prove such a simple result. A direct proof is
provided in appendix A.
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(4) Exploit selected equations from the system r = 0 to sim-
plify p and get conditions on d, eventually proving the non-
existence of nontrivial Darboux polynomials for D. (Sec 6)

Computer algebra systems do not provide built-in capabilities
to manipulate polynomials with symbolic multidegrees since even
comparing two monomials becomes undecidable in general. In our
case, the multidegree of p and therefore its support are not fixed
a priori making otherwise straightforward tasks like the reduc-
tion challenging. The algorithms presented in the next section aim
precisely to overcome these issues.

Furthermore, it is well known that the complexity of the com-
putation (in both time and space) of the polynomial reduction is
sensitive to the selected monomial order even when the final result
is independent of such order (cf. the discussion at the end of [5,
Chapter 2, §9]). It is thus unclear what monomial order to choose
a priori and why. This work also presents light-weight heuristics
to select optimal orders to minimize the size of the support of the
quotient g (without performing the division).

Unlike standard generation algorithms, in our case the system
r = 0 cannot be made explicit. We shall see how to exploit a partial
knowledge of this system to infer valuable information on d via
constants’ propagation. In some cases, this is enough to prove the
non-existence of nontrivial Darboux polynomials. In other cases,
the system r = 0 infers constraints on the multidegree d and one
can generate irreducible Darboux polynomials by solving a mixed
optimization problem as briefly illustrated below.

To better appreciate the interest and difficulties of the proposed
approach, we consider below the (purposely simple) linear dynamic
of (1) using DLexp; to order the monomials. A generic (monic)
ansatz p has then the form 3p,(; ;) ai,jmi j where

Pa(i,j) =1, 2 0A(i+j <V (i+j=]dAixd)), (2)
LC(p) = ag,q, = 1, mjj = xixg, and a; j are undetermined ele-
ments of the base field. In this case deg(p) = |d| = di + d2. The
general expression for D(p) is

D(p) = px101p + x202p = Z (pi+ jaijmij .
Py (i,j)

There is no need to store D(p) entirely to perform the reduction.
Only the terms of D(p) in the ideal (LM(p)) are required. For our
example, only the leading term of D(p), namely (pd; + d2) LM(p),
is needed as it is the only term divisible by LM(p). Thus, we imme-
diately have q = pd; + do. The normal form is then r = D(p) — qp:

r= Z (pi + j)aijmij — (ndy + dz) Z ai,jmi,j
Pa(ij) Pa(ij)

= Z (u(i—d1) +j—dz)aijmij .
Pa(i,j)

To reason about the system r = 0, the only expression one needs
to store is the coefficient c; ; of the monomial m;; of r, namely
cij = (u(i —dy) + j — da2)aij. For p to be Darboux, c; ; has to
vanish for all i, j. Thus, the only nonzero coefficients of p are those
for which the pair (i, j) satisfies the equation Hy(i, j) defined by
pu(i—dp) + j —dz = 0. If follows that p is Darboux if and only if its
support satisfies the conjunction Py (i, j) A Hy(i, j). By solving the
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optimization problem
|d]
Pq(i, j) A Hq (i, j)

where i, j,d1,d2 € N and p is a parameter (of the base field), one
gets irreducible Darboux polynomials. The irreducibility is a conse-
quence of the following known property of Darboux polynomials [8,
Proposition 2.5]: if p is a Darboux polynomial for D, then all factors
of p are themselves Darboux polynomials for D. It follows that if the
total degree of p is an optimal vector d* of (%) and p is reducible,
then its factors are themselves Darboux with lower total degrees,
contradicting the optimality of d*.

We observe that all reduction-based semi-decision procedures
for finding Darboux polynomials cannot guarantee the irreducibility
of the generated polynomials. This limitation is inherent to the way
these algorithms operate and cannot be easily bypassed.

It is interesting to observe that for the considered planar case, the
multidegree of any irreducible Darboux polynomial is an optimal
solution of (%). Indeed, if p is an irreducible Darboux polynomial
with a non-optimal multidegree d and d* denotes an optimal multi-
degree, then there exists an index k with d;. < di. for some index
k € {1, 2}. One then checks that

min "
s. t. (%)

xZ"‘ R P
is a polynomial contradicting the irreducibility of p. Thus solving
(%) provides a principled way to enumerate all irreducible Darboux
polynomials (detailed in appendix B for convenience). In general,
investigating whether each irreducible Darboux polynomial is a
solution of a similar optimization problem (completeness) is an
interesting research direction that we leave for future work.

4 GENERIC POLYNOMIAL REDUCTION

A straightforward data structure to encode a standard polynomial
is a finite set of variables together with a dictionary of (exponent,
coeflicient) pairs, where each exponent is a vector of natural num-
bers and the coefficients are allowed to be symbolic expressions
(distinct from the expression 0). In such settings, each pair corre-
sponds to a term. A generic polynomial p, however, is more subtle
to encode as the set of monomials is not fixed and depends on both
the multidegree as well as the total degree of p.

Assuming a fixed list of variables x = (x1,...,xy), we extend
the (exponent, coefficient)-dictionary to encode a generic polyno-
mial p = }, agx® with a symbolic multidegree d = (dy, ...,d,)
as follows. We allow the exponents to be linear expressions with
integer coefficients and add a default pair (*, a.) to encode undeter-
mined coefficients. Such a dictionary can be thought of as an n-ary
uninterpreted function ‘a’ which is only partially specified by the
pairs provided in the dictionary and where each pair corresponds
to what we call a generalized term. For instance, a monic generic
polynomial p with multidegree d is encoded as p := {(d, 1), (*,ax)}.
We use p[a] (with square brackets) to access the coefficient of the
exponent a. For instance, w.r.t. the dictionary above, p[d] evaluates
to 1 and p[a] returns the fresh symbol a, for any « distinct from
d.*

4p[a] should not be confused with p(a) which denotes the standard evaluation of
the polynomial p at x = a.
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We define the functions exponent(-) and coefficient(-) to respec-
tively extract the exponent and coefficient of a generalized term. In
the sequel, ‘¢’ will be used to denote a (generalized) term and does
no longer refer to the time variable.

To make explicit how the coefficients of D(p) and fyp, for some
polynomial fy, are related to those of p, we decompose the compu-
tation as actions of elementary operators which we now introduce.
An elementary operator has the form t9;, 0 < i < n, where t is a
term distinct from zero and 9; is either the identity (when i = 0)
or the partial derivative with respect to x; when i > 1. Elementary
operators act on generalized terms. We have t9; : g +— td;g and
every operator § = td; has a natural right inverse ! defined on a
(nonzero) term g as the indefinite integral f (t~1g)dx;.

Algorithm 1 computes the coefficient of a monomial m in R(p)
for some operator R defined as a sum of elementary operators.
The loop sums up the contributions of all elementary operators
composing R. To compute the coefficient of a monomial m in D(p),
it suffices to set R to D. If moreover the quotient q of the division
of D(p) by p is known, then by setting R to —qdp + D, algorithm 1
computes the coefficient of any monomial of the remainder.

We stress the fact that the algorithm doesn’t compute the support
of R(p). It only gives the formal expression of the coefficient of a
given monomial. Observe also that the algorithm doesn’t explicitly
check if a belongs to the support of p. Indeed, for a given exponent
a, one cannot compare in general the monomials x* and x?. Such
comparison is however possible when a — d is a vector of integers,
and we shall see that this special case occurs frequently in our
settings, allowing to effectively simplify the final expressions of the
computed coefficients.

Algorithm 2 presents a convenient rewriting of the (standard)
division algorithm [5, Theorem 3, p 64] to reduce D(p) w.r.t. p. It
highlights the fact that, at each step, a subset of terms is required,
namely those divisible by LM(p) (stored in g in line 3). Assuming g
is finite and has all its monomials of the form x+# , with f € N,
we observe that computing LT(g’) (line 5) becomes a licit operation
that can be performed using standard procedures ordering the
monomials since ¢’ is a standard polynomial by construction (its
exponents are fixed vectors of natural numbers).

Algorithm 3 implements the subroutine required to compute
g in line 3 of algorithm 2. We show below that the aforemen-
tioned assumptions on g do hold. Line 4 stores in S the monomials
x% < x? = LM(p) having their images, via &, in the monomial
ideal (LM(p)) (encoded as exponent(§(x%)) > d). The system
to solve is amenable to an equivalent system of linear inequali-
ties. Using the matrix associated with the selected monomial or-
der [14], the condition x* < x is equivalent to a linear system of
inequalities in d — a which we denote by L(d — a). The condition
exponent(6(x%)) > d is equivalent to & + y > d where y € Z" en-
codes the shift of x* by the elementary operator §. By the change of
variables o’ = d — a, the system to solve (line 4) becomes equivalent
to{a’ | L(¢’) Ay = &’}. Any « € S has thus the form d — o/,
with o’ € Z", and exponent(§(p[a]x*)) = exponent(§(x%)) =
(d-a)+y=d+(y—o)withy—a’ >0.Letting =y — a’, we
just proved that all monomials of g (line 5) have the form d + f,
with > 0.
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Algorithm 1: Computation of coeff,, (R, m).

Data: a set of variables x, an operator R := 3.7 fid;, a
generic polynomial p := {..., (%, a«)}, a monomial m.
Result: the coefficient of m in R(p).
1 A~ UL{tijoi | fi = Xjtij}

2«0

3 for 5 € A do

4 t «— 57 1(m)

5 a « exponent(t)

6 t— 5(pla]x®)

7 ¢ « c + coefficient(t")
s returnc

Algorithm 2: Quotient computation.

Data: a set of variables x, a weight monomial order, a
polynomial derivation D, a monic generic polynomial
p=A{...,(d,1), (* as)} with multidegree d.

Result: the quotient g of D(p) w.r.t. p.

1q«0

2 repeat

3 g < Terms of (—gp + D(p)) in (LM(p))
4 g «— LTgﬁ

5 | g—q+LT(g)

6 untilg =0

7 return q

Algorithm 3: Terms of R(p) in (LM(p)).

Data: a set of variables x, a weight monomial order, an
operator R := }.7 fid;, a generic polynomial
p ={..., (% as)} with multidegree d.
Result: terms of R(p) in (LM(p)).
1 A« U?zo{l’i,jai | fi = Zj ti,j}
2 g« 0
3 for § € A do
4 L Se—{a|x*<xn exponent(§(x%)) > d}
5 | 9 g+ Zaes S(plalx®)

6 returng

Depending on the selected monomial order, the set of solutions S
might be infinite. For instance, for n = 2, § = x19p, and w.r.t. Lexiz,
a = (d1—1,dj) isin S for any d;, > do. This problem occurs because
the stated conditions are not enough to enforce the compactness of
the support of p which is assumed only implicitly. To ensure the
compactness of the support of p (and therefore S) without adding
extra conditions on its total degree, we restrict the computation to
weight monomial orders as specified in the input of the algorithm.

Note that the presentation of the different algorithms favors
clarity over efficiency. In practice, the computation of g (line 3) is
performed incrementally to avoid recomputing the monomials of
D(p) in (LM(p)) at each iteration. Likewise, S (line 4) is computed
faster using the aforementioned change of variables.
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We end this section by performing a generic polynomial reduc-
tion for the Van der Pol dynamic with respect to DLexz; (the choice
of this particular monomial order will become clearer in section 5).

Example 4.1 (Van der Pol oscillator). The dynamic of the Van der
Pol oscillator is defined by the following ODE
Xy =x2
Xo = p(1 - xf)xg - x1 ®)
For simplicity, we fix y1 to 1. The corresponding derivation D is then
x201 + (1= x¥)xz = x1)da.

PROPOSITION 4.2. Letp = 3ip, (i j) ai,jxfxg be a generic monic
polynomial with LM(p) = x4, d = (dy, dy). For the monomial order
DLexzi, the polynomial reduction of D(p) w.r.t. p is given by r =

—qp + D(p) where:

2
q = —d2x{ = Ad,—2,dy+1%2 *+ g, ~2,d,419d,+1,d,—1X1 + G0, (4)
and
90 = ad,+1,d,-1 (~@d, ~2.d,419d, - 1,4, + d1 +1)

+0ad,—2.d,+19d,,dy-1 +d2 - (5)

Moreover, the coefficient c; j ofxi'xé inr is given by:

cij == (J+Dai-1,je1 + (J —qo)aij + (i + 1)ai1,j-1

+ (=04, -2,d,+19d,+1,dy 1) Bi-1,j (6)

+(ag,—2,dy+1)aij-1 + (d2 = jai—2j .

Proor. The quotient of the reduction is given by algorithm 2.
We compute the coefficient of any term of r using algorithm 1.
For convenience, we detail below the several contributions of the
involved elementary operators (the first 4 from the operator D
and the last 4 from the multiplication by —q). With respect to the
notations of algorithm 1, we detail coefficient(¢’), § and a:

e (i+1)ajt1,j—1 fromxz0; and (i +1,j - 1),
e jajj from x20; and (i, j),
e —jaj—sj from —xfxzaz and (i — 2, j),
e —(j+1)aj—1,j+1 from —x192 and (i — 1, j + 1),
e draj_3 j from dzxfao and (i — 2, ),
® g, _2dy+13ij-1 fromag 54,4128 and (i, j — 1),
® —44 2 d,+19d,+1,d,~14i-1,j from
—ad,-2,d,+18d,+1,d,~1%190 and (i — 1, j),
e —qoa; j from —qodp and (i, j)
It suffices to sum up these contributions to get the stated ¢; j. O

5 OPTIMAL WEIGHT ORDERS

For non-zero polynomials p and g, one has LM(pq) = LM(p) LM(q)
and LM(p + q) < max{LM(p),LM(q)} (for any monomial order)
where the equality holds whenever LM(p) = LM(q) = LC(p) +
LC(q) # 0. In particular, when r is the normal form of h w.r.t. p,
one has h = gp +r and LM(h) = max{LM(q) LM(p), LM(r)} (since
LM(r) # LM(q) LM(p) by definition of r). Finally, if the monomial
m divides the monomial m’ then m < m’ for any monomial order. >

The quotient of the polynomial reduction of D(p) w.r.t. p de-
pends on the chosen monomial order. However, proposition 2.1

5This fact isn’t immediate from the definition of monomial orders. Cf. lemma A.2 in
appendix A for a discussion and a direct proof.
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tells us that for p to be Darboux, all quotients must be equal. Thus
computing the quotients for distinct monomial orders and com-
paring their supports may yield interesting necessary conditions
for p to be Darboux. In addition, selecting monomial orders that
minimize the size of the support of g is a reasonable parameter to
control: monomial orders which lead to larger supports would nec-
essarily have superfluous monomials that would only complicate
the expressions of g and the coefficients of r. Indeed, this latter fact
can be appreciated in algorithm 2 where g is constructed term by
term.

In this section, we present a light-weight abstraction that selects
weight orders that minimize the size of g without computing q. The
idea is to find an upper bound on LM(q) that depends only on the
derivation D and which is valid for all monomial orders.

For a derivation D = Z?ﬂ fi9;, and a monomial x%, a > 0, one

has
n
a—-1 x _ ,o-1
x Zaiﬁx_i =x
i=1

Thus the action of D on x* (when a > 0) is the same as the multi-
plication of x*~! by the polynomial s,. When there exists an index
j such that a; = 0 then 9;x* = 0. We let I denote the set of indices
such that &; > 0 for all i € I and let x%|; denote the restriction of
the monomial x“ to the indices i € I. We then have

D(xall)zzlxifi% =x“ |IZalf~—=x

iel iel

D) = ) aifiy =

i=1

@)

1 S (8)
and therefore the action of D is also the same as the multiplication
of the monomial x%~! 1 by the polynomial sq 7.

To remove the dependency of the polynomials sq|; to @, we
abstract away the actual coefficients and keep only the support of
the involved terms. To do so, we introduce the formal polynomial s

having as its support the Newton polytope of all terms in f; 7~ 2 forall
i € I. (There is no harm in regarding sy as both a formal polynomlal
or its corresponding Newton polytope as long as the type is clear
from the context.) Thus, for any «, and any I, the support of sy is
a subset of the support of s7. In particular LM(sq 1) < LM(s)g) for
any monomial order. The polynomials sy depend therefore only
on the derivation D and the set I. The following lemma alleviates
further the need to enumerate the 2" —1 polynomials s as the leader
of the polynomial s = 5|1 _,} provides a tight upper bound. We
term s, when seen as a formal polynomial, the Newton polynomial
of D.

LEmMA 5.1. Let D be a polynomial derivation and let s denote its
Newton polynomial. Let sq |1 be defined as in equation (8). Then for
any monomial order, any non-empty subset I C {1, ...,n}, and any
exponent &, LM(sq 1) < LM(s).

Proor. LetI C {1,...,n} denote a non-empty subset. By defini-
tion of the Newton polynomial sy, for any @, and any monomial
order, LM(s¢|7) < LM(s|7). Moreover, any monomial m in s; has
the form tx—‘f where t denotes some monomial in f;, i € I. But
m’ = t— is also a monomial of s which is divisible by m. By lemma
A2, m 5 m’. When m = LM(s|1), one gets LM(s|;) < m’ < LM(s)
as stated. O
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PrROPOSITION 5.2. Let D be a polynomial derivation and let s
denote its Newton polynomial. Let q denote the quotient of the division
of D(p) by p for some monomial order. Then x LM(q) < LM(s).

Proor. We decompose p and D(p) over non-empty subsets I:

p:a0+z Zaax“:ao+zz aaxau .

T Vjel T Vjel
le=0 Olj=0
-1
D(p) =" D @D ) =" > aax™ sy -
T Vel T Vjel
0!]'=0 aj:O

For any « € support(p), we have by lemma 5.1

X LM(x* ™ s p) = X% LM(s 1) < LM(p) LM(s) .

Moreover
LM(D(p)) < max{x )71 LM(sp)},
where x@(D -1 |1 denotes the leading monomial of 3y jgr agx®1 -
Thus o
x| LM(D(p)) < xp max{x®D 71 LM(s)} < LM(p) LM(s) -

©)
By lemma A.2, x|; < x for any non-empty subset I. Thus x =
maxy{xr} and

x LM(D(p)) = max{x 1} LM(D(p)) = max{xr LM(D(p))} .

By eq. (9), x LM(D(p)) < LM(p) LM(s). However LM(p) LM(q) <
LM(D(p)), hence x LM(p) LM(g) < LM(p) LM(s), and x LM(q) <
LM(s) as desired. o

Remark 5.3. A simple degree-based analysis of the derivation
D = Y%, fid;, shows that deg(q) < —1 + max; deg(f;). This in-
equality is also an immediate corollary of proposition 5.2 since
deg(s) < n— 1+ max; deg(f;) uniformly for all monomial orders.
While uniform upper bounds tend to be appreciated, in our case,
the dependency to the monomial order is instrumental as it would
potentially lead to a mismatch on the supports of the quotients g
giving relevant necessary conditions for p to be Darboux. More-
over, the upper bound LM(s) is in general tighter to estimate the
monomials in g. For instance, for the Van der Pol dynamics, the
degree-based analysis would infer that deg(q) < 2, giving an es-
timate of 6 monomials for q for all monomial orders. For DLex21,
xLM(gq) < LM(s) gives only 4 monomials and the upper bound
decreases even to 3 for other weight orders.

Let’s consider example 4.1 and recall its derivation D = x0; +
(1= xf)xg — x1)02. In this case I can be either {1}, {2} or {1, 2}:
Sal(1) = @ fiy = arxz
Sa|{2) = a2fo’d = ap(—x{xz +x2 = x1)
$ = Sa|{1,2) = oclflxil + agfzxiz
= —azxfxg + alxg + apx1xy — azxf .
Their Newton polytopes are depicted in fig. 1. Each dot corresponds

to a monomial t);—‘i’ in s¢|7. One can appreciate the fact that New-

ton polytopes are over-approximations of the actual supports (for

instance x%xz is in s but not in s, for any a).
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$ = S1{1.2}

Y

{2}

Figure 1: Newton polytopes (Van der Pol).

Proposition 5.2 provides a key abstraction to reason about ¢
without computing it. We exploit such abstraction below to select
weight monomial orders that minimize the size of g. Let |m|yorg
denote the number of monomials less than m for a given mono-
mial order mord. We drop the index mord when it’s clear from the
context. Proposition 5.2 implies that LM(q) < LM(s) and therefore
|ILM(q)| < |LM(s)| for any monomial order. To minimize [LM(q)|
over monomial orders, it then suffices to minimize |LM(s)| (which
depends only on D).

Let LM(s) = x# for some B = (P1,...,Pn) € N". We restrict
ourselves to weight orders wLex where w € N is a positive weight
vector, and seek to minimize [LM(s)| over wLexs where o ranges
over the n! permutations of the variables. (DLex are particular cases
withw =(1,...,1).)

PROPOSITION 5.4. Let s denote the Newton polynomial for a poly-
nomial derivation D. Fix a positive weight vector w € N" and let
wlexg denote the weight monomial order with xg (1) > *++ > Xg(n)-

Assume that the leading term xP of s is the same for all o. Let c*
denote a permutation such that wg+ (1) Bor(1) < *** < W (n) Bo (n)-
Then the monomial order wLex s+ minimizes |[LM(s)| over wLeX.

Proo¥. For wLexg, if ¥* < x then |a|.w < |flw (the weight of
a monomial is defined at beginning of section 2). The size of the
set {x* | |a|w < |Blw} is independent from the permutation o. It
thus suffices to minimize the size of {x% | x* < x# A |a|w = |Blw}
when o ranges over the permutations. The stated result is then an
immediate corollary of proposition C.3 (cf. appendix C). O

For the running example and DLex, orders, applying proposi-
tion 5.2 to s (shown in fig. 1), one gets x1x2 LM(q) < LM(s) =
xfxz = xP (for all DLex, orders). By proposition 5.4, DLexz; min-
imizes the size of q over all DLex, orders since fio = 1 < 3 = f.
The reason why we computed q and ¢; j w.r.t. DLexz; at the end of

section 4 is now justified.

Remark 5.5. For a fixed weight vector w, the hypothesis in propo-
sition 5.4 requiring that the leading monomial of s should be the
same for wlLex, for all o is not really a limitation. It suffices to
perturb slightly the slope defined by w to make the requirement
holds for some other w’. For instance, the weight vector w = (1, 3)
doesn’t satisfy the requirement for the Newton polytope s in fig. 1.
It suffices then to consider w’ = (1,4) or w’ = (1,1).

Our strategy is to consider optimal weight monomial orders
suggested by the vertices of the Newton polytope s and to compute
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the quotients for such orders using algorithm 2. By equating the
quotients, one thus gets necessary conditions on the coefficients of
p for p to be Darboux.

We further observe that proposition 5.2 can be used to show that,
for p to be Darboux, the support of q is tightly over-approximated
by the Newton polytope s shifted by (—1,...,—1). Remarkably, a
similar result was shown in [4, Proposition 6] where it was used to
provide sufficient criteria for the existence of rational first integrals.

We conclude by applying our strategy for the running exam-
ple 4.1. Vertices (0,2) and (3,1) of the Newton polytope s cor-
respond to leading monomials for the respective weight orders
w = (1,4) and w = (1,1). Proposition 5.4 applies in both cases
and suggests the monomial orders wlLex;2 and DLexz;. We already
computed the quotient for DLexz;. For wLexjz, algorithm 2 gives
the following expression where the coefficients g; denote some
expressions that we don’t explicit for conciseness:

(10)

The supports mismatch between the quotients obtained for
DLexz; and wlexiy provides the following necessary condition.

qw = gzxf +9g1xX1+go -

PROPOSITION 5.6. For the Van der Pol dynamic, for p to be Darboux,
it is necessary that ag, _y 4,41 = 0. Therefore

q= —dzxf +dy + (1 + d])ad1+1’d2_1 = —dzx% + q(/) .

Proor. For p to be Darboux, the expression of g in eq. (4) and
¢ in eq. (10) must be equal. The supports of g and g,, differ by x»
which is present in g but not in g,,. Thus the coefficient of x7 in
q has to vanish, that is ag, _3 4,41 = 0. This in turn simplifies the
constant qo in eq. (5) to gy = dz2 + (1 +d1)ag,+1,d,-1- m|

As an immediate consequence, the expression of ¢; ; of eq. (6)
simplifies to

cij =—(j+Dai—1jr1+ (- qp)aij
+(i+1ajy1,j-1+ (do = pai—z; . (11)

Fig. 2 is convenient to appreciate which coefficients of p contribute
to ¢; j where an arrow (i’, j*) — (i, j) intuitively means that a; j
contributes to c; j. The dependency to ag, 11 4,~1 (Which appears
in qp) is omitted as this particular coefficient behaves like a con-
stant with respect to the varying coefficients which depend on the
selected (i, j).

6 CONSTANTS’ PROPAGATION

For the generic polynomial p to be Darboux, the remainder r has
to identically vanish. In our settings, r cannot be made explicit and
is only accessible via querying its coefficients. The idea is select

(i—-1Lj+1)
)

-2 QD)

(i+1,j-1)
L2

Figure 2: Contributions to c; ;.
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simple coefficients of r to infer additional necessary conditions on
the support of p and its multidegree. One could for instance select
coefficients of r that involve a unique undetermined coefficient ay
of p. Once ay is set, the information is propagated to the entire
system. The process is re-iterated until no such simplifications are
possible. If one detects a contradiction along the way then a proof
of non-existence (of nontrivial Darboux polynomials) is provided.

If the propagation stops without arriving at a contradiction, then
the user may want to provide additional directives like trying a
different monomial order or supplying additional assumptions. In
general, the presented method is not guaranteed to arrive at a
contradiction if a Darboux polynomial doesn’t exist. We observe
that the gathered necessary conditions could complement well,
at least in principle, standard generation algorithms by reducing
upfront the support of p for a fixed multidegree d. Indeed, solving
r = 0 is arguably the main computational bottleneck for these
procedures.

We end this section by showing the successive steps of the con-
stant propagation on our running example. Fig. 3a shows the initial
support of p in red w.r.t. DLexz;. The exponent (d; — 2,d2 + 1)
was removed by proposition 5.6. The positions of the blue patterns
illustrate how we target a coefficient of p using the generic expres-
sion of ¢; ; (cf. fig. 2). Notice that when the blue pattern doesn’t
overlap with p, it simply means that (i, j) is outside the support of
the remainder r (this gives a hint about the support of r without
computing it). By “sliding” the (upper) blue pattern of c; j along the
upper red diagonal of fig. 3a, all the coefficients of that diagonal
are removed. Formally:

LEMMA 6.1. Forall0 < ¢ <dj -3,
Cora,dy+dy—t-1=0 = Apdiidy—e-1=0 .

ProoF. When ¢ < dq — 3, for (i, j) = (£+2,d1 +dy — £ — 1), there
is a unique contributor to c;j (cf. eq. (11)), namely (dz — j)ai—2,;.
Substituting i, j, one gets —(d1 — € — 1)a g,+d,—¢—1 = 0. The result
follows since £ < dj — 3 implies -2 > —(d; — £ — 1). o

The same simplification holds by repeatedly sliding the blue
pattern along the successive upper diagonals of p (for j > d3). The
shape of the polynomial p is “trimmed” from its original triangular
form to a staircase of slope —3, as shown in fig. 3b. The same
reasoning actually holds for the lower diagonals.

LEMMA 6.2. Forl < { < d2,6d1+[+2’d2,g =0 = a4,4+rd,—¢=0.

Proor. Apply eq. (11) with (i, j) = (d1 + £ + 2,dy — £). There is
a unique contributor to ¢; j, namely (dz — j)a;-z, j. One thus gets
cij = —((d2 = ) — d2)ag,+¢d,-¢ = £ad,+¢,d,—¢- (When £ = 0, the
equation is trivial and doesn’t imply any additional constraint on
ag, d, = LC(p) =1) m}

Likewise, by sliding the pattern along the successive lower di-
agonals, the support of p gets further simplified to the one shown
in fig. 3b. Observe how the final shape of p coincides with the two
left slopes of the blue pattern used to trim p. The propagation of
zeros is achieved and the predicate P (i, j) is updated to

Pi(i,j) =1, 2 0A(i+3j <di+3d2) A(i—j <di—dp) . (12)
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(dl.,dz)

(a) Initial support (DLex).

(b) Diagonals trimmed (DLex).

Y

(c) Canonical shape.

Figure 3: Successive (truncated) supports of p after constants propagation for example 4.1.

Remark 6.3 (Canonical shape). The shape of p depicted in fig. 3b
can be simplified further by considering a weight order with w =
(1,42) say. Theoretically, the weight vector w = (1,d; + 1) would
remove all the monomials with j > dy leading to the reduced
(asymptotic) shape of p of fig. 3c. This particular shape is canonical
in the sense that it doesn’t depend on any monomial order: all
monomials of p divides LM(p) and are therefore lower than LM(p)
for any monomial order by lemma A.2.

We further propagate one more constant, namely LC(p) = 1. For
DLexz1, this is achieved by positioning the blue patterns as shown
in fig. 3b where the coefficients appear as labels.

LEMMA 6.4. Assume the predicate P(’i(i, Jj) forp. Thencg, 1 g,41 =
0 = ad1—3,d2+1 = dl'

ProoF. Apply eq. (11) with (i, j) = (d1 —1,d2 +1). We only need

to account for 2 monomials. Thus ¢; j = (i+1)ajy1,j—1+(d2—j)ai-2,j.

Since LC(p) = 1, we get cq,_1 d,+1 = d1 — Ag,—3.dy+1- O

LEMMA 6.5. Assume the predicate Pé](i,j) forp. Thencg,11,4,-1 =
0 = ag,-1,d,-1 = d2.

ProoF. Apply eq. (11) with (i, j) = (d1 +1, dy — 1). We only need
to account for 2 monomials. Thus ¢; j = —(j + 1)a;—1,j+1 + (d2 —
j)ai-z,j. Since LC(p) = 1, we get cg, 41,d,—1 = —~d2+ag4,-1,4,-1- O

The propagation of d, d2 can now carry on (upwards) along the
boundaries of p prescribed by Plf, j until reaching the axes (i = 0
and j = 0) at which point, some conditions on dj, d2 will have to
be satisfied. Instead of doing so, we present in the remaining of
this section a “shortcut” that leads to the same result. The idea is to
explore the coefficients in the vicinity of LM(p) looking for a local
contradiction that do not require reaching the axes. Such strategy
is appealing as it attempts to minimize the size of the proof.

Assuming P’ (i, j), the constant g;, in proposition 5.6 simplifies
to dz. Thus, when j = d, eq. (11) simplifies to

(13)

Pictorially, the corresponding blue pattern gets reduced to its only
2 diagonal dots when it slides along j = da. In particular, when
(i, j) = (d1 — 2,d2), on gets the following constraint on d.

cid, = —(d2 + a1 g4 + (i +Dajp4,-1 -

PROPOSITION 6.6. For p to be Darboux, |d| = 0 must hold.
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Proor. Fix the monomial order to DLexz1. For p to be Darboux,
its shape is prescribed by P(’i(i,j), Thus, for (i, j) = (d1 — 2,d2),
eq. (13) applies and one gets c;,j = cg,—p.4, = —(d2 + 1)aq, ~3,d,+1 +
(d1 — Vag, —1,4,—1- However a4, _3 4,41 = d1 by lemma 6.4 and
ag,—1,d,—1 = d2 by lemma 6.5. Thus ¢; j = —(d2+1)d1 +(d1 —1)dz =
—dy — d3. The result follows as c; j has to vanish. m]

As a byproduct, we give a new proof for the following known
result [11] where it is stated for complex numbers in terms of
invariant algebraic curves (cf. remark 1.3):

THEOREM 6.7. Assuming i # 0, the Van der Pol oscillator (ex-
ample 4.1) has no nontrivial Darboux polynomials over any field. In
particular, its limit cycle is not an algebraic curve.

Notice that the entire trimming of the shape of p is not necessary
to prove theorem 6.7. In fact only finitely many coefficients a,, all
in the vicinity of the leader LM(p), need to be assigned, namely

Ad, —2,dr+1> Ady+1,dy,— 1> Ad;,dy — 15 Ady —3,dp+15 Cd; —1,dy — 1> Ady —2,d, -

This finite set provides a concise formal certificate that can be
checked independently to verify the claimed result.

We implemented our algorithms as a Wolfram Mathematica
package [2] and were able to automatically prove that no nontrivial
Darboux polynomial exists for the entire class of Liénard systems
as stated in [11] (the Van der Pol oscillator being in particular a
typical Liénard system).

7 CONCLUSION

The existence of an upper bound on irreducible Darboux polyno-
mials in higher dimensions is conjectured but remains out of reach.
We currently even lack sufficient or necessary algebraic criteria for
the existence of Darboux polynomials, except for simple restricted
classes of derivations. A key difficulty resides in the highly intricate
relationships that the polynomials defining the derivation have to
satisfy. We believe that the toolbox provided in this work is an
important step forward to approach the problem experimentally
with the assistance of a computer program, avoiding thereby the
cumbersome error-prone pen-and-paper computations and focus-
ing on potentially interesting patterns that could serve to sharpen
our intuitions on these challenging problems.
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A SIMPLE PROOFS

Proposition 2.1 holds for any polynomial A, not just D(p). A simple
direct proof is provided below without requiring Grébner theory.

LEMMA A.1. Let h and p be two polynomials over a field. Then h is
in the ideal generated by p if and only if the remainder of the division
of h by p is zero with respect to any monomial order.

Proor. Necessity. Suppose that the ideal membership assump-
tion holds. Then, there exists a polynomial g such that h = gp.
Suppose there exists a monomial ordering such that h = ¢’p+r and
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r # 0. Thenr = (q — ¢’)p forcing q # q’. But then LM(p) divides
LM(r) contradicting the definition of r. (Sufficiency is trivial) O

The following useful fact is not immediate from the definition of
monomial orders. It can however be shown using Dickson lemma
as stated in [5, Corollary 6, p72]. We provide below a direct proof.

LEmMMA A.2. Let m,m’ denote two monomials. If m divides m’
then m < m’ for any monomial order. (The converse doesn’t hold in
general.)

Proor. The result is immediate when m’ = m. Suppose that
m’ < m. One has m’" = gm for some monomial g. Suppose there
exists a monomial ordering for which m > m’ thenm > gm and one
constructs a descending sequence of monomials m > gm > g°m >

. which must terminate (by the well-foundedness of monomial
orders). Thus there exists a finite index k such that gkm = ¢**1m.
But then m = gm = m’, a contradiction. To see that the converse
doesn’t hold in general, consider DLexz;. Then, x; < x2 but x1
doesn’t divide x5. O

B PLANAR LINEAR DYNAMICS

If p is irrational then Py (i, j) A Hy(i, j) reduces to the singleton
(d1,dz) and the only Darboux polynomial is LM(p) = x9. This in
particular means that x; and x3 are Darboux polynomials since fac-
tors of a Darboux polynomial are themselves Darboux polynomials.

Assume next that p is rational. By substituting j for dy — pu(i—dp)
using Hy(i, j), the conjunction Py (i, j) A Hy(i, j) reduces to the
following predicate on i:

Py(i) =((1-p)(i—d1) <0Ap(i—dy) <dy Ai>=0)
V(A-pi—-d)=0Ap(i—di) <dy Ai>di)

(14)
(15)

which involves the parameter ;1 as well as the multidegree d =
(dl, dz) Ofp

If p = 1 then Py(i) reducestod; < i < |d|, j = |d| —i. The
optimal value of |d| is ds reached for d; = 0. Thus any homogeneous
polynomial is a Darboux polynomial.

If p # 1, eq. (15) gives i = dy, and (i, j) = (d1,d2). So LM(p) is
the unique monomial of degree |d| in p.

Using eq. (14), the smallest |d| for which a Darboux polynomial
involving both x; and x; exists satisfies dp = max{0, u(i — dy)}.

When p(i —dy) <0,dz =0, |d| =di, eq. (14) implies 0 < pp < 1
(recall that i < |d|). Thus j = p(d; — i). In this case, the smallest
dy — i for j to be a positive integer is the denominator of u. Thus,
assuming y = Z—i is the irreducible form of i, the smallest |d| would
be py reached for i = 0. Thus (i, j) = (0, 1) and

_ 2 Hi
p =Xy +aou X,

is an irreducible Darboux polynomial (with a cofactor y;) for any
constant ag,y, . (Equivalently, x#2y~™#1 is an invariant rational func-
tion.)

If u(i—dy) = 0,dp = p(i—dq) and j = 0. We observe that d; = |d|
implies g = 0 or i = di. The former is impossible by assumption
=
g >1lorp < 0(since 0 < p < 1implies |d| < iand pg = 1 was
already discussed). Let y = 2 be the irreducible form of 1 where

Ho
p1, p2 > 0.

and the latter is impossible by eq. (14). Therefore p = and
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If 4 > 1, then the smallest dy is p1, i = dq + p2, and the smallest One thus gets S; — Slf
|d| is reached for d; = 0. Thus (i, j) = (y2,0) and 5 .
o(i)
— LM He
Py *apn0n 2o B~ Bogy =+ = Po(i-) —ann 1]
is an irreducible Darboux polynomial (with a cofactor y1) for any =P (i+1)
constant ay, . (Equivalently, x, **x}" is an invariant rational func- Bor () ~Ber(ien) -1
tion.) — [| |_ . L= . —kn—i].
Finally, if 4 < 0, then the smallest dy is y1, i = di — 2, and the kzzo Pl=bey Poti-1) = Potis)
smallest |d] is 1 + iz obtained for 1 = 0. S0 (i, j) = (0,0) and By the change of variables k = B (;) — By (i+1) + @i+1, for the index
p= x‘f : xél Y+ agp ait+1, the sum S;4q can be equivalently rewritten as
is an irreducible Darboux polynomial (with a cofactor 0) for any Bo(n—1

constant ago. (Equivalently, xflez’[1 is an invariant function.) Z UBl = Bo(r) =+ = Bo(i=1) = Bo(ir1) —kin—i—1].

kzﬁo‘ i _ﬁo' i+1
C DECREASING CHAINS OF MONOMIALS P

Thus one gets for S, | — Siy1
Recall that the number of monomials of degree k € Ninn > 1

. . - . Bo(i) = Po(ir) —1
variables is [k, n] = (k;'ill). The monotonicity of [k, n] w.r.t. to .
its first argument is immediate: if k < k’, then [k,n] < [K/,n]. kZ—;) UBl = Bor) =+ = Poti-1) = Potiry) —kin—i—1]

The same holds w.r.t. its second argument since [k, n] = (k+z—1): if

n < n’, then [k n] < [k,n’]. By monotonicity of [+, -] w.r.t. its second argument, for all k, 0 <

Let I'(B,0), p € N", o a permutation of {1,...,n}, denote the k< Botiy = Poin =1
nu;nber ofmono}rlnials of degree | 3| lower than}ylcﬁ for the mon;mial (Bl =By =+ = Bo(i-1) = Bo(ir) —ksn—i—1]
order DLexg with x5 (1) > -+ > x5(p). Foreacha1,0 < o1 < f5(1). < . L o o kn—i
there are [|f| — a1, n — 1] monomials of degree || which are lower , LAl 'Ba(l)/ _'Bg(lfl) eg(lﬂ), ’ |
than x#. Similarly, when a1 = Bo(1), for each az, 0 < a2 < By (2), Thu§ Siv1 ~ Si/+1 < Si = S; or equivalently S, +5; < Sis1 +5;
there are [|f] — B5(1) — @2, n — 2] monomials of degree || which making I'(f,0”) <T'(, 0). =
are lower than x”, etc. The general formula for I'(f, o) is then ProposiTiON C.2. Let f € N" and let o denote a permutation of
Boiy-1 B -1 ‘{Bl,...,n}. ThenT (B, o) is minimal for o if and only if (1) < -+ <
DBl —ann=11+ > (1Bl = Bar) - azn 2]+ o(m:
a1=0 =0 PRrOOF. Necessity. By contradiction, suppose that I'(f, o) is min-
Bo(n-1)-1 imal for a permutation o that doesn’t satisfy f;(1) < -+ < Bo(n)-
. Z UBl = Bo) =+ = Bo(n-2) — @n-1.1].  (16) That is, there exists an index i such that f;(;) > Bo(i+1)- Lemma C.1
n_1=0 provides a permutation ¢’ for which I'(f,6”) < T(f, o) contradict-

ing the minimality of T'(f, o).

Sufficiency. Suppose that ;1) < -++ < B (p). Let o’ # o denote
a permutation such that T'(f, 0’) is minimal. Then /(1) < -+ <
Bo’ (n)- Since the ordering on natural numbers is total, one gets
Bo(i) = Bor (i) for all i. Thus, by eq. (16), T(B,0’) = T'(f,0) and
T' (B, 0) is also minimal. O

LemmA C.1. Let o denote a permutation and suppose that there
exists i, such that () > Ps(ir1)- Let o’ denote the permutation
obtained from o by swapping o (i) and o (i+1), that is o’ (i) = o(i+1),
o’ (i+1) = o(i), and ' (j) = o(j) for all indices j distinct from i
andi+ 1. ThenT(B,0’) < T(f, o). In words, when B (i) > Bo(is1)s
by swapping x(;) and x5 (j11) in the variable ordering, the number
of monomials of total degree |B| lower that xP decreases. Generalizing the degree by a positive weight w € N", one defines

Iy (P, 0) as the number of monomials of weight |f|,, lower than

. N
ProOF. By definition, I'(§, o) and I'(§, o”) differ by the two sums xP for wLex with Xg(1) > *** > Xg(n)- Proposition C.2 generalizes

Bon—1 as follows.
Si = - — = Po(icy) —i,n—i
' aZ=0 1A= Fo Poti-1) ~ ] ProrosiTION C.3. Let f € N" and let o denote a permutation of
5 ' ) {1,...,n}. ThenT\y (B, 0) is minimal for o if and only if ws (1) By (1) <
o (i+1) ~ i <w ,B _
Sir=" Y. 1Bl Bory =+ = Boti) — @t n—i—1] omPom
Air1=0 Proor. (Sketch) For a positive weight vector w, the function
in T'(f, o) which are respectively replaced in I'(, o”) by Ty (B, 0) is defined as in eq. (16), except that ;) and ; are scaled
Bortin—1 by wg(;). By setting a] to ws(;ya;, each sum S; defining T, (B, 0)
K becomes
s = [1] - e By — i — ]
i aizzo ﬁ ﬂo‘(l) ﬂa(l 1) i Wiy Bty -1
Bo(n—1 [1Blw - Wo’(l)ﬁo‘(l) - Wtr(i—l)ﬁo‘(i—l) - 0(1{, n—il,
’ . ;=0
= D UBI=Boy == Patin) = Boeer) ~ st n=i=1]
i Q;FO o o=t et~ and the proofs carry on very similarly to the ones seen above. O
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