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ABSTRACT
Given a polynomial ordinary differential equation (ODE), we devise

generic polynomial reduction algorithms to automatically inves-

tigate the intertwined relationship between the total degree of

(nontrivial) Darboux polynomials and the polynomials defining the

ODE. By generic we mean that both the coefficients and the multi-

degree of the involved polynomials are symbolic. We use Newton

polytopes as a light-weight abstraction to select optimal weight

monomial orders improving the efficiency of the involved computa-

tions. The method works by inferring necessary conditions on both

the coefficients and the multidegree for the polynomial to be Dar-

boux. These conditions are then used, via constants’ propagation,

to restrict the shape of the generic candidate, pinpointing which

monomials ought to be preserved by removing the superfluous

ones. In some relevant cases, we are able to automatically prove

the nonexistence of (nontrivial) Darboux polynomials providing a

new toolbox to prove and formally certify that some limit cycles

are not algebraic.
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1 INTRODUCTION
In his seminal work [6, §II, pp 71-73], Gaston Darboux introduced al-

gebraic particular integrals, known today as Darboux polynomials,

as a mean to construct (rational) general integrals (i.e. first inte-
grals or conserved quantities) for polynomial ODEs (equivalently,
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polynomial vector fields) of the standard form:
1

¤𝑥𝑖 = 𝑓𝑖 (𝑥1, . . . , 𝑥𝑛), 𝑖 = 1, . . . , 𝑛 .

where 𝑓1, . . . , 𝑓𝑛 are multivariate polynomials in 𝑥1, . . . , 𝑥𝑛 over

some field and ¤𝑥𝑖 denotes the derivative of 𝑥𝑖 with respect to an

independent variable 𝑡 . In the sequel, we represent such a system

concisely as ¤𝑥 = 𝑓 (𝑥). From a differential algebraic perspective, the

ODE defines a polynomial derivation 𝐷 =
∑𝑛
𝑖=1 𝑓𝑖 𝜕𝑖 , acting on the

ring of polynomials where 𝜕𝑖 denotes the partial derivative with

respect to 𝑥𝑖 .
2
Darboux polynomials, which we now define, are

the main object of interest in this paper.

Definition 1.1 (Darboux polynomial). Let 𝐷 denote a polynomial

derivation. A polynomial 𝑝 is Darboux for 𝐷 , or simply Darboux
when 𝐷 is clear from the context, whenever 𝐷 (𝑝) = 𝑞𝑝 for some

polynomial 𝑞, called the cofactor of 𝑝 . (Equivalently, 𝑝 is Darboux if

and only if the principal ideal ⟨𝑝⟩ is a differential ideal.) Polynomials

of total degree zero are trivially Darboux.

Computation of Darboux polynomials is a central problem in

the Prelle-Singer procedure for computing elementary first integrals

of planar systems of polynomial ODEs [12], which yields a sys-

tematic method for computing elementary closed-form solutions

(whenever these exist) to an important class of ordinary differential

equations. Owing to this important application, algorithms for gen-

erating Darboux polynomials have received considerable attention

in computer algebra. More recently, Darboux polynomials have

found application in the area of formal safety verification of cyber-

physical systems, where the problem of their automatic generation

is encountered in the broader context of searching for invariant

(and positively invariant) sets [7, 9, 13, 15]. Geometrically, the zero

set of a Darboux polynomial defines an invariant set (cf. [11, p.

147]).

Theorem 1.2. Let ¤𝑥 = 𝑓 (𝑥) denote a polynomial ODE and let 𝑥 (𝑡),
𝑡 ∈ 𝐼 ⊆ R, denote its unique solution for a given initial condition
𝑥 (0). If 𝑝 is a Darboux polynomial for the given ODE then the zero
set of 𝑝 , {𝑥 | 𝑝 (𝑥) = 0}, is invariant under the flow of the system, i.e.
if 𝑝 (𝑥 (0)) = 0 then 𝑝 (𝑥 (𝑡)) = 0 for all 𝑡 ∈ 𝐼 . (In particular, trivial
Darboux polynomials correspond to trivial invariant sets, namely the
empty set and the entire space.)

Remark 1.3. The condition 𝐷 (𝑝) ∈ ⟨𝑝⟩ is only a sufficient con-

dition for the invariance of the zero set of 𝑝; over the complex

numbers, when 𝑝 is square-free, the equivalence holds [3]. Over

the reals, however, the radical ideal membership does not provide
a necessary condition for the invariance of the set of real roots of

𝑝 and it is instead necessary to consider the real radical ideal [7,

Theorem 1].

1
A modern account of Darboux integrability theory can be found in [8, 17].

2𝐷 is a special case of the Lie derivative with respect to the vector field defined by 𝑓 .
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Darboux generation algorithms (e.g. [1, 7, 10]) are semi-decision

procedures enumerating all Darboux polynomials up to a certain

fixed bound on the total degree. The bound is eventually increased

until finding a (not necessarily irreducible) Darboux polynomial or

reaching memory and/or time limits. Theoretically, the existence

of a bound on the total degree of irreducible Darboux polynomials

is, as of today, an open problem when 𝑛 ≥ 3 [8, p. 49, Corollary

2.2]. Even when such theoretical bound exists, it is easily seen

that it depends non trivially not only on the total degrees of the

polynomials 𝑓𝑖 but also on their coefficients. For instance, consider

the following planar linear (decoupled) ODE, where 𝜇 ≠ 0:

¤𝑥1 = 𝜇𝑥1, ¤𝑥2 = 𝑥2 . (1)

When 𝜇 is a positive integer, the polynomial 𝑝 = 𝑥1 + 𝑥𝜇
2
is an

irreducible Darboux polynomial of total degree 𝜇. Any generation

procedure is unlikely to succeed in finding 𝑝 (which involves both

𝑥1 and 𝑥2) unless it reaches 𝜇 which can be arbitrarily big. In this

work, we precisely tackle this problem: we present a procedure that

attempts to make explicit the potential dependencies between the

total degree of Darboux polynomials and the polynomials defining

the ODE.

Contributions. Given a polynomial derivation 𝐷 , we devise a

procedure to infer necessary conditions for a generic polynomial

ansatz 𝑝 to be Darboux. By generic we mean that both the coeffi-

cients and the multidegree of 𝑝 are undetermined (sec. 3). We adapt

the standard division algorithm to the specific reduction of 𝐷 (𝑝)
w.r.t. 𝑝 and show how such polynomials can be encoded and ma-

nipulated automatically by a computer program (sec. 4). We discuss

the sensitivity of the division to the chosen monomial order and

propose a light-weight abstraction based on Newton polytopes to

select weight monomial orders that minimize the size of the quo-

tients (sec. 5). Finally, we show how to exploit selected coefficients

of the remainder to remove superfluous monomials from 𝑝 and

infer necessary conditions on its multidegree 𝑑 in a principled way

(sec. 6). Throughout the paper, we use the Van der Pol dynamics

(example 4.1) as a running example to showcase the proposed al-

gorithms and techniques. In particular, we provide an alternative,

fully automated, proof that its limiting cycle is not algebraic for

any field (theorem 6.7).

2 PRELIMINARIES
Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) denote a set of variables and 𝛼 = (𝛼1, . . . , 𝛼𝑛)
be a vector of natural numbers. We use the shorthand notation 𝑥𝛼

to denote the multivariate monomial

∏𝑛
𝑖=1 𝑥

𝛼𝑖
𝑖
. Given a monomial

order, we use the symbol ≺ to compare monomials and denote by

LT(𝑝), LM(𝑝), and LC(𝑝), the leading term, monomial and coeffi-

cient of a polynomial 𝑝 =
∑
𝛼 𝑎𝛼𝑥

𝛼
, respectively. When LC(𝑝) = 1,

we say that 𝑝 is monic. The exponent 𝑑 = (𝑑1, . . . , 𝑑𝑛) of LM(𝑝) is
called the multidegree of 𝑝 . The coefficients 𝑎𝛼 of 𝑝 are assumed to

range over some fixed base field of characteristic zero (e.g. R or C).
Given a positive weight vector𝑤 ∈ N𝑛 , the weight of a monomial

𝑥𝛼 is |𝛼 |𝑤 =
∑
𝑖 𝑤𝑖𝛼𝑖 . In particular, when𝑤 = (1, . . . , 1), the weight

coincides with the so-called degree of 𝑥𝛼 , that is |𝛼 | = ∑
𝑖 𝛼𝑖 (we

drop the index𝑤 in this case).

The set {𝛼 ∈ N𝑛 | 𝑎𝛼 ≠ 0} will be called the support or shape
of 𝑝 . Unless 𝑎𝛼 is known to be zero, we consider that 𝛼 belongs to

the support of 𝑝 . The convex hull of the support of a polynomial is

known as its Newton polytope [16]. The total weight of 𝑝 is defined

as the maximum of |𝛼 |𝑤 when 𝛼 ranges over the support of 𝑝 .

In particular, deg(𝑝), the total degree of 𝑝 , is the maximum of

|𝛼 | over the support of 𝑝 . Unlike the univariate case, the equality
deg(LM(𝑝)) = deg(𝑝) doesn’t hold in general for every monomial

order.

The division algorithm [5, Chapter 2] over multivariate polyno-

mials takes as input a polynomial ℎ and an ordered list of polynomi-

als 𝑝1, . . . , 𝑝𝑚 and produces an ordered list of quotients 𝑞1, . . . , 𝑞𝑚
and a remainder, or normal form, 𝑟 with the property that no mono-

mial in 𝑟 is divisible by LM(𝑝1), . . . , LM(𝑝𝑚). In this work, we are

interested in the division by only one polynomial 𝑝 . The depen-

dence of the division algorithm to the monomial order remains,

however, even for this simpler case (since the leading term of 𝑝

depends itself on such order). For instance, consider the polynomial

ℎ = 𝑥2
1
𝑥2 + 𝑥1𝑥2

2
+ 𝑥2

2
, and the divisor 𝑝 = 𝑥2

1
+ 𝑥2

2
− 1. The reduc-

tions below are w.r.t. the degree lexicographic monomial order with

𝑥1 ≻ 𝑥2 and 𝑥2 ≻ 𝑥1, denoted DLex12 and DLex21 respectively:

ℎ =DLex12 𝑥2𝑝 + (𝑥1𝑥22 − 𝑥
3

2
+ 𝑥2

2
+ 𝑥2)

ℎ =DLex21 (1 + 𝑥1)𝑝 + (𝑥2𝑥21 − 𝑥
3

1
− 𝑥2

1
+ 𝑥1 + 1) .

Remarkably, when the remainder is zero, the reduction no longer

depends on the chosen monomial order. This observation follows

from [5, §6, Corollary 2] and the fact that {𝑝} is a Gröbner basis of
the principal ideal ⟨𝑝⟩ for any monomial ordering.

3
As an imme-

diate consequence, we get the following useful facts for Darboux

polynomials.

Proposition 2.1. Let 𝐷 denote a polynomial derivation. Then 𝑝

is a Darboux polynomial for 𝐷 if and only if the remainder of 𝐷 (𝑝)
w.r.t. 𝑝 is zero for any monomial order. In particular, if 𝑞, 𝑞′ are the
quotients of the reduction w.r.t. two distinct monomial orders, then
𝑞 = 𝑞′.

Thus, if one is able to compute the remainder 𝑟 of 𝐷 (𝑝) w.r.t. a
generic polynomial 𝑝 , then the equation 𝑟 = 0 gives a necessary and

sufficient condition for 𝑝 to be Darboux. Moreover, if one obtains

two quotients for distinct monomial orders, then equating these two

quotients leads to necessary conditions for 𝑝 to be Darboux. While

these observations might seem obvious once stated, the former

was so far exclusively exploited to search for Darboux polynomials

with a fixed total degree and the latter was completely overlooked

(cofactors are for instance not used at all in [10]).

3 APPROACH AND INTUITIONS
Given a polynomial derivation 𝐷 , we shall see in the upcoming

sections how to automate (partially or fully) the following steps:

(1) Encode a generic ansatz 𝑝 =
∑
𝛼 𝑎𝛼𝑥

𝛼
where the 𝑎𝛼 as well

as the multidegree 𝑑 of 𝑝 are symbolic expressions.

(2) Perform the division of 𝐷 (𝑝) w.r.t. 𝑝 to get a quotient 𝑞 and

a remainder 𝑟 . (Sec 4)

(3) Exploit “optimal” monomial orders to simplify both 𝑞 and 𝑟

for 𝑝 to be Darboux. (Sec 5)

3
One doesn’t need Gröbner theory to prove such a simple result. A direct proof is

provided in appendix A.
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(4) Exploit selected equations from the system 𝑟 = 0 to sim-

plify 𝑝 and get conditions on 𝑑 , eventually proving the non-

existence of nontrivial Darboux polynomials for 𝐷 . (Sec 6)

Computer algebra systems do not provide built-in capabilities

to manipulate polynomials with symbolic multidegrees since even

comparing two monomials becomes undecidable in general. In our

case, the multidegree of 𝑝 and therefore its support are not fixed

a priori making otherwise straightforward tasks like the reduc-

tion challenging. The algorithms presented in the next section aim

precisely to overcome these issues.

Furthermore, it is well known that the complexity of the com-

putation (in both time and space) of the polynomial reduction is

sensitive to the selected monomial order even when the final result

is independent of such order (cf. the discussion at the end of [5,

Chapter 2, §9]). It is thus unclear what monomial order to choose

a priori and why. This work also presents light-weight heuristics

to select optimal orders to minimize the size of the support of the

quotient 𝑞 (without performing the division).

Unlike standard generation algorithms, in our case the system

𝑟 = 0 cannot be made explicit. We shall see how to exploit a partial

knowledge of this system to infer valuable information on 𝑑 via

constants’ propagation. In some cases, this is enough to prove the

non-existence of nontrivial Darboux polynomials. In other cases,

the system 𝑟 = 0 infers constraints on the multidegree 𝑑 and one

can generate irreducible Darboux polynomials by solving a mixed

optimization problem as briefly illustrated below.

To better appreciate the interest and difficulties of the proposed

approach, we consider below the (purposely simple) linear dynamic

of (1) using DLex21 to order the monomials. A generic (monic)

ansatz 𝑝 has then the form

∑
𝑃𝑑 (𝑖, 𝑗 ) 𝑎𝑖, 𝑗𝑚𝑖, 𝑗 where

𝑃𝑑 (𝑖, 𝑗) := 𝑖, 𝑗 ≥ 0 ∧ (𝑖 + 𝑗 < |𝑑 | ∨ (𝑖 + 𝑗 = |𝑑 | ∧ 𝑖 ≥ 𝑑1)), (2)

LC(𝑝) = 𝑎𝑑1,𝑑2 = 1, 𝑚𝑖, 𝑗 = 𝑥𝑖
1
𝑥
𝑗

2
, and 𝑎𝑖, 𝑗 are undetermined ele-

ments of the base field. In this case deg(𝑝) = |𝑑 | = 𝑑1 + 𝑑2. The
general expression for 𝐷 (𝑝) is

𝐷 (𝑝) = 𝜇𝑥1𝜕1𝑝 + 𝑥2𝜕2𝑝 =
∑︁

𝑃𝑑 (𝑖, 𝑗 )
(𝜇𝑖 + 𝑗)𝑎𝑖, 𝑗𝑚𝑖, 𝑗 .

There is no need to store 𝐷 (𝑝) entirely to perform the reduction.

Only the terms of 𝐷 (𝑝) in the ideal ⟨LM(𝑝)⟩ are required. For our
example, only the leading term of 𝐷 (𝑝), namely (𝜇𝑑1 + 𝑑2) LM(𝑝),
is needed as it is the only term divisible by LM(𝑝). Thus, we imme-

diately have 𝑞 = 𝜇𝑑1 + 𝑑2. The normal form is then 𝑟 = 𝐷 (𝑝) − 𝑞𝑝:

𝑟 =
∑︁

𝑃𝑑 (𝑖, 𝑗 )
(𝜇𝑖 + 𝑗)𝑎𝑖, 𝑗𝑚𝑖, 𝑗 − (𝜇𝑑1 + 𝑑2)

∑︁
𝑃𝑑 (𝑖, 𝑗 )

𝑎𝑖, 𝑗𝑚𝑖, 𝑗

=
∑︁

𝑃𝑑 (𝑖, 𝑗 )
(𝜇 (𝑖 − 𝑑1) + 𝑗 − 𝑑2)𝑎𝑖, 𝑗𝑚𝑖, 𝑗 .

To reason about the system 𝑟 = 0, the only expression one needs

to store is the coefficient 𝑐𝑖, 𝑗 of the monomial 𝑚𝑖, 𝑗 of 𝑟 , namely

𝑐𝑖, 𝑗 = (𝜇 (𝑖 − 𝑑1) + 𝑗 − 𝑑2)𝑎𝑖, 𝑗 . For 𝑝 to be Darboux, 𝑐𝑖, 𝑗 has to

vanish for all 𝑖, 𝑗 . Thus, the only nonzero coefficients of 𝑝 are those

for which the pair (𝑖, 𝑗) satisfies the equation 𝐻𝑑 (𝑖, 𝑗) defined by

𝜇 (𝑖 − 𝑑1) + 𝑗 − 𝑑2 = 0. If follows that 𝑝 is Darboux if and only if its

support satisfies the conjunction 𝑃𝑑 (𝑖, 𝑗) ∧𝐻𝑑 (𝑖, 𝑗). By solving the

optimization problem

min |𝑑 |
s. t. 𝑃𝑑 (𝑖, 𝑗) ∧ 𝐻𝑑 (𝑖, 𝑗)

(★)

where 𝑖, 𝑗, 𝑑1, 𝑑2 ∈ N and 𝜇 is a parameter (of the base field), one

gets irreducible Darboux polynomials. The irreducibility is a conse-

quence of the following known property of Darboux polynomials [8,

Proposition 2.5]: if 𝑝 is a Darboux polynomial for 𝐷 , then all factors

of 𝑝 are themselves Darboux polynomials for𝐷 . It follows that if the

total degree of 𝑝 is an optimal vector 𝑑∗ of (★) and 𝑝 is reducible,

then its factors are themselves Darboux with lower total degrees,

contradicting the optimality of 𝑑∗.
We observe that all reduction-based semi-decision procedures

for finding Darboux polynomials cannot guarantee the irreducibility
of the generated polynomials. This limitation is inherent to the way

these algorithms operate and cannot be easily bypassed.

It is interesting to observe that for the considered planar case, the

multidegree of any irreducible Darboux polynomial is an optimal

solution of (★). Indeed, if 𝑝 is an irreducible Darboux polynomial

with a non-optimal multidegree 𝑑 and 𝑑∗ denotes an optimal multi-

degree, then there exists an index 𝑘 with 𝑑∗
𝑘
< 𝑑𝑘 for some index

𝑘 ∈ {1, 2}. One then checks that

𝑥
𝑑∗
𝑘
−𝑑𝑘

𝑘
𝑝

is a polynomial contradicting the irreducibility of 𝑝 . Thus solving

(★) provides a principled way to enumerate all irreducible Darboux
polynomials (detailed in appendix B for convenience). In general,

investigating whether each irreducible Darboux polynomial is a

solution of a similar optimization problem (completeness) is an

interesting research direction that we leave for future work.

4 GENERIC POLYNOMIAL REDUCTION
A straightforward data structure to encode a standard polynomial

is a finite set of variables together with a dictionary of (exponent,

coefficient) pairs, where each exponent is a vector of natural num-

bers and the coefficients are allowed to be symbolic expressions

(distinct from the expression 0). In such settings, each pair corre-

sponds to a term. A generic polynomial 𝑝 , however, is more subtle

to encode as the set of monomials is not fixed and depends on both

the multidegree as well as the total degree of 𝑝 .

Assuming a fixed list of variables 𝑥 = (𝑥1, . . . , 𝑥𝑛), we extend
the (exponent, coefficient)-dictionary to encode a generic polyno-

mial 𝑝 =
∑
𝛼 𝑎𝛼𝑥

𝛼
with a symbolic multidegree 𝑑 = (𝑑1, . . . , 𝑑𝑛)

as follows. We allow the exponents to be linear expressions with

integer coefficients and add a default pair (∗, 𝑎∗) to encode undeter-
mined coefficients. Such a dictionary can be thought of as an 𝑛-ary

uninterpreted function ‘𝑎’ which is only partially specified by the

pairs provided in the dictionary and where each pair corresponds

to what we call a generalized term. For instance, a monic generic

polynomial 𝑝 with multidegree 𝑑 is encoded as 𝑝 := {(𝑑, 1), (∗, 𝑎∗)}.
We use 𝑝 [𝛼] (with square brackets) to access the coefficient of the

exponent 𝛼 . For instance, w.r.t. the dictionary above, 𝑝 [𝑑] evaluates
to 1 and 𝑝 [𝛼] returns the fresh symbol 𝑎𝛼 for any 𝛼 distinct from

𝑑 . 4

4𝑝 [𝛼 ] should not be confused with 𝑝 (𝛼 ) which denotes the standard evaluation of

the polynomial 𝑝 at 𝑥 = 𝛼 .
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We define the functions exponent(·) and coefficient(·) to respec-
tively extract the exponent and coefficient of a generalized term. In

the sequel, ‘𝑡 ’ will be used to denote a (generalized) term and does

no longer refer to the time variable.

To make explicit how the coefficients of 𝐷 (𝑝) and 𝑓0𝑝 , for some

polynomial 𝑓0, are related to those of 𝑝 , we decompose the compu-

tation as actions of elementary operators which we now introduce.

An elementary operator has the form 𝑡 𝜕𝑖 , 0 ≤ 𝑖 ≤ 𝑛, where 𝑡 is a

term distinct from zero and 𝜕𝑖 is either the identity (when 𝑖 = 0)

or the partial derivative with respect to 𝑥𝑖 when 𝑖 ≥ 1. Elementary

operators act on generalized terms. We have 𝑡 𝜕𝑖 : 𝑔 ↦→ 𝑡 𝜕𝑖𝑔 and

every operator 𝛿 = 𝑡 𝜕𝑖 has a natural right inverse 𝛿
−1

defined on a

(nonzero) term 𝑔 as the indefinite integral

∫
(𝑡−1𝑔)𝑑𝑥𝑖 .

Algorithm 1 computes the coefficient of a monomial𝑚 in 𝑅(𝑝)
for some operator 𝑅 defined as a sum of elementary operators.

The loop sums up the contributions of all elementary operators

composing 𝑅. To compute the coefficient of a monomial𝑚 in 𝐷 (𝑝),
it suffices to set 𝑅 to 𝐷 . If moreover the quotient 𝑞 of the division

of 𝐷 (𝑝) by 𝑝 is known, then by setting 𝑅 to −𝑞𝜕0 + 𝐷 , algorithm 1

computes the coefficient of any monomial of the remainder.

We stress the fact that the algorithm doesn’t compute the support

of 𝑅(𝑝). It only gives the formal expression of the coefficient of a

given monomial. Observe also that the algorithm doesn’t explicitly

check if 𝛼 belongs to the support of 𝑝 . Indeed, for a given exponent

𝛼 , one cannot compare in general the monomials 𝑥𝛼 and 𝑥𝑑 . Such

comparison is however possible when 𝛼 − 𝑑 is a vector of integers,

and we shall see that this special case occurs frequently in our

settings, allowing to effectively simplify the final expressions of the

computed coefficients.

Algorithm 2 presents a convenient rewriting of the (standard)

division algorithm [5, Theorem 3, p 64] to reduce 𝐷 (𝑝) w.r.t. 𝑝 . It
highlights the fact that, at each step, a subset of terms is required,

namely those divisible by LM(𝑝) (stored in 𝑔 in line 3). Assuming 𝑔

is finite and has all its monomials of the form 𝑥𝑑+𝛽 , with 𝛽 ∈ N𝑛 ,
we observe that computing LT(𝑔′) (line 5) becomes a licit operation

that can be performed using standard procedures ordering the

monomials since 𝑔′ is a standard polynomial by construction (its

exponents are fixed vectors of natural numbers).

Algorithm 3 implements the subroutine required to compute

𝑔 in line 3 of algorithm 2. We show below that the aforemen-

tioned assumptions on 𝑔 do hold. Line 4 stores in 𝑆 the monomials

𝑥𝛼 ⪯ 𝑥𝑑 = LM(𝑝) having their images, via 𝛿 , in the monomial

ideal ⟨LM(𝑝)⟩ (encoded as exponent(𝛿 (𝑥𝛼 )) ≥ 𝑑). The system

to solve is amenable to an equivalent system of linear inequali-

ties. Using the matrix associated with the selected monomial or-

der [14], the condition 𝑥𝛼 ⪯ 𝑥𝑑 is equivalent to a linear system of

inequalities in 𝑑 − 𝛼 which we denote by 𝐿(𝑑 − 𝛼). The condition
exponent(𝛿 (𝑥𝛼 )) ≥ 𝑑 is equivalent to 𝛼 + 𝛾 ≥ 𝑑 where 𝛾 ∈ Z𝑛 en-

codes the shift of 𝑥𝛼 by the elementary operator 𝛿 . By the change of

variables 𝛼 ′ = 𝑑−𝛼 , the system to solve (line 4) becomes equivalent

to {𝛼 ′ | 𝐿(𝛼 ′) ∧ 𝛾 ≥ 𝛼 ′}. Any 𝛼 ∈ 𝑆 has thus the form 𝑑 − 𝛼 ′,
with 𝛼 ′ ∈ Z𝑛 , and exponent(𝛿 (𝑝 [𝛼]𝑥𝛼 )) = exponent(𝛿 (𝑥𝛼 )) =
(𝑑 − 𝛼 ′) + 𝛾 = 𝑑 + (𝛾 − 𝛼 ′) with 𝛾 − 𝛼 ′ ≥ 0. Letting 𝛽 = 𝛾 − 𝛼 ′, we
just proved that all monomials of 𝑔 (line 5) have the form 𝑑 + 𝛽 ,
with 𝛽 ≥ 0.

Algorithm 1: Computation of coeff𝑝 (𝑅,𝑚).
Data: a set of variables 𝑥 , an operator 𝑅 :=

∑𝑛
𝑖=0 𝑓𝑖 𝜕𝑖 , a

generic polynomial 𝑝 := {. . . , (∗, 𝑎∗)}, a monomial𝑚.

Result: the coefficient of𝑚 in 𝑅(𝑝).
1 Δ← ⋃𝑛

𝑖=0{𝑡𝑖, 𝑗 𝜕𝑖 | 𝑓𝑖 =
∑

𝑗 𝑡𝑖, 𝑗 }
2 𝑐 ← 0

3 for 𝛿 ∈ Δ do
4 𝑡 ← 𝛿−1 (𝑚)
5 𝛼 ← exponent(𝑡)
6 𝑡 ′ ← 𝛿 (𝑝 [𝛼]𝑥𝛼 )
7 𝑐 ← 𝑐 + coefficient(𝑡 ′)
8 return 𝑐

Algorithm 2: Quotient computation.

Data: a set of variables 𝑥 , a weight monomial order, a

polynomial derivation 𝐷 , a monic generic polynomial

𝑝 := {. . . , (𝑑, 1), (∗, 𝑎∗)} with multidegree 𝑑 .

Result: the quotient 𝑞 of 𝐷 (𝑝) w.r.t. 𝑝 .
1 𝑞 ← 0

2 repeat
3 𝑔← Terms of (−𝑞𝑝 + 𝐷 (𝑝)) in ⟨LM(𝑝)⟩
4 𝑔′ ← 𝑔

LT(𝑝 )
5 𝑞 ← 𝑞 + LT(𝑔′)
6 until 𝑔 = 0

7 return q

Algorithm 3: Terms of 𝑅(𝑝) in ⟨LM(𝑝)⟩.
Data: a set of variables 𝑥 , a weight monomial order, an

operator 𝑅 :=
∑𝑛
𝑖=0 𝑓𝑖 𝜕𝑖 , a generic polynomial

𝑝 := {. . . , (∗, 𝑎∗)} with multidegree 𝑑 .

Result: terms of 𝑅(𝑝) in ⟨LM(𝑝)⟩.
1 Δ← ⋃𝑛

𝑖=0{𝑡𝑖, 𝑗 𝜕𝑖 | 𝑓𝑖 =
∑

𝑗 𝑡𝑖, 𝑗 }
2 𝑔← 0

3 for 𝛿 ∈ Δ do
4 𝑆 ← {𝛼 | 𝑥𝛼 ⪯ 𝑥𝑑 ∧ exponent(𝛿 (𝑥𝛼 )) ≥ 𝑑}
5 𝑔← 𝑔 +∑𝛼∈𝑆 𝛿 (𝑝 [𝛼]𝑥𝛼 )
6 return 𝑔

Depending on the selected monomial order, the set of solutions 𝑆

might be infinite. For instance, for 𝑛 = 2, 𝛿 = 𝑥1𝜕0, and w.r.t. Lex12,
𝛼 = (𝑑1−1, 𝑑′

2
) is in 𝑆 for any 𝑑′

2
≥ 𝑑2. This problem occurs because

the stated conditions are not enough to enforce the compactness of

the support of 𝑝 which is assumed only implicitly. To ensure the

compactness of the support of 𝑝 (and therefore 𝑆) without adding

extra conditions on its total degree, we restrict the computation to

weight monomial orders as specified in the input of the algorithm.

Note that the presentation of the different algorithms favors

clarity over efficiency. In practice, the computation of 𝑔 (line 3) is

performed incrementally to avoid recomputing the monomials of

𝐷 (𝑝) in ⟨LM(𝑝)⟩ at each iteration. Likewise, 𝑆 (line 4) is computed

faster using the aforementioned change of variables.
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We end this section by performing a generic polynomial reduc-

tion for the Van der Pol dynamic with respect to DLex21 (the choice
of this particular monomial order will become clearer in section 5).

Example 4.1 (Van der Pol oscillator). The dynamic of the Van der

Pol oscillator is defined by the following ODE

¤𝑥1 = 𝑥2

¤𝑥2 = 𝜇 (1 − 𝑥2
1
)𝑥2 − 𝑥1

(3)

For simplicity, we fix 𝜇 to 1. The corresponding derivation 𝐷 is then

𝑥2𝜕1 + ((1 − 𝑥2
1
)𝑥2 − 𝑥1)𝜕2.

Proposition 4.2. Let 𝑝 =
∑
𝑃𝑑 (𝑖, 𝑗 ) 𝑎𝑖, 𝑗𝑥

𝑖
1
𝑥
𝑗

2
be a generic monic

polynomial with LM(𝑝) = 𝑥𝑑 , 𝑑 = (𝑑1, 𝑑2). For the monomial order
DLex21, the polynomial reduction of 𝐷 (𝑝) w.r.t. 𝑝 is given by 𝑟 =

−𝑞𝑝 + 𝐷 (𝑝) where:
𝑞 = −𝑑2𝑥21 − 𝑎𝑑1−2,𝑑2+1𝑥2 + 𝑎𝑑1−2,𝑑2+1𝑎𝑑1+1,𝑑2−1𝑥1 + 𝑞0, (4)

and

𝑞0 = 𝑎𝑑1+1,𝑑2−1
(
−𝑎𝑑1−2,𝑑2+1𝑎𝑑1−1,𝑑2 + 𝑑1 + 1

)
+ 𝑎𝑑1−2,𝑑2+1𝑎𝑑1,𝑑2−1 + 𝑑2 . (5)

Moreover, the coefficient 𝑐𝑖, 𝑗 of 𝑥𝑖
1
𝑥
𝑗

2
in 𝑟 is given by:

𝑐𝑖, 𝑗 = − ( 𝑗 + 1)𝑎𝑖−1, 𝑗+1 + ( 𝑗 − 𝑞0)𝑎𝑖, 𝑗 + (𝑖 + 1)𝑎𝑖+1, 𝑗−1
+ (−𝑎𝑑1−2,𝑑2+1𝑎𝑑1+1,𝑑2−1)𝑎𝑖−1, 𝑗
+ (𝑎𝑑1−2,𝑑2+1)𝑎𝑖, 𝑗−1 + (𝑑2 − 𝑗)𝑎𝑖−2, 𝑗 .

(6)

Proof. The quotient of the reduction is given by algorithm 2.

We compute the coefficient of any term of 𝑟 using algorithm 1.

For convenience, we detail below the several contributions of the

involved elementary operators (the first 4 from the operator 𝐷

and the last 4 from the multiplication by −𝑞). With respect to the

notations of algorithm 1, we detail coefficient(𝑡 ′), 𝛿 and 𝛼 :

• (𝑖 + 1)𝑎𝑖+1, 𝑗−1 from 𝑥2𝜕1 and (𝑖 + 1, 𝑗 − 1),
• 𝑗𝑎𝑖, 𝑗 from 𝑥2𝜕2 and (𝑖, 𝑗),
• − 𝑗𝑎𝑖−2, 𝑗 from −𝑥2

1
𝑥2𝜕2 and (𝑖 − 2, 𝑗),

• −( 𝑗 + 1)𝑎𝑖−1, 𝑗+1 from −𝑥1𝜕2 and (𝑖 − 1, 𝑗 + 1),
• 𝑑2𝑎𝑖−2, 𝑗 from 𝑑2𝑥

2

1
𝜕0 and (𝑖 − 2, 𝑗),

• 𝑎𝑑1−2,𝑑2+1𝑎𝑖, 𝑗−1 from 𝑎𝑑1−2,𝑑2+1𝑥2𝜕0 and (𝑖, 𝑗 − 1),
• −𝑎𝑑1−2,𝑑2+1𝑎𝑑1+1,𝑑2−1𝑎𝑖−1, 𝑗 from
−𝑎𝑑1−2,𝑑2+1𝑎𝑑1+1,𝑑2−1𝑥1𝜕0 and (𝑖 − 1, 𝑗),
• −𝑞0𝑎𝑖, 𝑗 from −𝑞0𝜕0 and (𝑖, 𝑗) .

It suffices to sum up these contributions to get the stated 𝑐𝑖, 𝑗 . □

5 OPTIMALWEIGHT ORDERS
For non-zero polynomials 𝑝 and𝑞, one has LM(𝑝𝑞) = LM(𝑝) LM(𝑞)
and LM(𝑝 + 𝑞) ⪯ max{LM(𝑝), LM(𝑞)} (for any monomial order)

where the equality holds whenever LM(𝑝) = LM(𝑞) =⇒ LC(𝑝) +
LC(𝑞) ≠ 0. In particular, when 𝑟 is the normal form of ℎ w.r.t. 𝑝 ,

one has ℎ = 𝑞𝑝 + 𝑟 and LM(ℎ) = max{LM(𝑞) LM(𝑝), LM(𝑟 )} (since
LM(𝑟 ) ≠ LM(𝑞) LM(𝑝) by definition of 𝑟 ). Finally, if the monomial

𝑚 divides the monomial𝑚′ then𝑚 ⪯ 𝑚′ for any monomial order.
5

The quotient of the polynomial reduction of 𝐷 (𝑝) w.r.t. 𝑝 de-

pends on the chosen monomial order. However, proposition 2.1

5
This fact isn’t immediate from the definition of monomial orders. Cf. lemma A.2 in

appendix A for a discussion and a direct proof.

tells us that for 𝑝 to be Darboux, all quotients must be equal. Thus

computing the quotients for distinct monomial orders and com-

paring their supports may yield interesting necessary conditions

for 𝑝 to be Darboux. In addition, selecting monomial orders that

minimize the size of the support of 𝑞 is a reasonable parameter to

control: monomial orders which lead to larger supports would nec-

essarily have superfluous monomials that would only complicate

the expressions of 𝑞 and the coefficients of 𝑟 . Indeed, this latter fact

can be appreciated in algorithm 2 where 𝑞 is constructed term by

term.

In this section, we present a light-weight abstraction that selects

weight orders that minimize the size of 𝑞 without computing 𝑞. The
idea is to find an upper bound on LM(𝑞) that depends only on the

derivation 𝐷 and which is valid for all monomial orders.

For a derivation 𝐷 =
∑𝑛
𝑖=1 𝑓𝑖 𝜕𝑖 , and a monomial 𝑥𝛼 , 𝛼 > 0, one

has

𝐷 (𝑥𝛼 ) =
𝑛∑︁
𝑖=1

𝛼𝑖 𝑓𝑖
𝑥𝛼

𝑥𝑖
= 𝑥𝛼−1

𝑛∑︁
𝑖=1

𝛼𝑖 𝑓𝑖
𝑥
𝑥𝑖

= 𝑥𝛼−1𝑠𝛼 . (7)

Thus the action of 𝐷 on 𝑥𝛼 (when 𝛼 > 0) is the same as the multi-

plication of 𝑥𝛼−1 by the polynomial 𝑠𝛼 . When there exists an index

𝑗 such that 𝛼 𝑗 = 0 then 𝜕𝑗𝑥
𝛼 = 0. We let 𝐼 denote the set of indices

such that 𝛼𝑖 > 0 for all 𝑖 ∈ 𝐼 and let 𝑥𝛼 |𝐼 denote the restriction of

the monomial 𝑥𝛼 to the indices 𝑖 ∈ 𝐼 . We then have

𝐷 (𝑥𝛼 |𝐼 ) =
∑︁
𝑖∈𝐼

𝛼𝑖 𝑓𝑖
𝑥𝛼

𝑥𝑖
= 𝑥𝛼−1 |𝐼

∑︁
𝑖∈𝐼

𝛼𝑖 𝑓𝑖
𝑥 |𝐼
𝑥𝑖

= 𝑥𝛼−1 |𝐼 𝑠𝛼 |𝐼 , (8)

and therefore the action of 𝐷 is also the same as the multiplication

of the monomial 𝑥𝛼−1 |𝐼 by the polynomial 𝑠𝛼 |𝐼 .
To remove the dependency of the polynomials 𝑠𝛼 |𝐼 to 𝛼 , we

abstract away the actual coefficients and keep only the support of

the involved terms. To do so, we introduce the formal polynomial 𝑠 |𝐼
having as its support the Newton polytope of all terms in 𝑓𝑖

𝑥 |𝐼
𝑥𝑖

for all

𝑖 ∈ 𝐼 . (There is no harm in regarding 𝑠 |𝐼 as both a formal polynomial

or its corresponding Newton polytope as long as the type is clear

from the context.) Thus, for any 𝛼 , and any 𝐼 , the support of 𝑠𝛼 |𝐼 is
a subset of the support of 𝑠 |𝐼 . In particular LM(𝑠𝛼 |𝐼 ) ⪯ LM(𝑠 |𝐼 ) for
any monomial order. The polynomials 𝑠 |𝐼 depend therefore only

on the derivation 𝐷 and the set 𝐼 . The following lemma alleviates

further the need to enumerate the 2
𝑛−1 polynomials 𝑠 |𝐼 as the leader

of the polynomial 𝑠 = 𝑠 | {1,...,𝑛} provides a tight upper bound. We

term 𝑠 , when seen as a formal polynomial, the Newton polynomial
of 𝐷 .

Lemma 5.1. Let 𝐷 be a polynomial derivation and let 𝑠 denote its
Newton polynomial. Let 𝑠𝛼 |𝐼 be defined as in equation (8). Then for
any monomial order, any non-empty subset 𝐼 ⊆ {1, . . . , 𝑛}, and any
exponent 𝛼 , LM(𝑠𝛼 |𝐼 ) ⪯ LM(𝑠).

Proof. Let 𝐼 ⊆ {1, . . . , 𝑛} denote a non-empty subset. By defini-

tion of the Newton polynomial 𝑠 |𝐼 , for any 𝛼 , and any monomial

order, LM(𝑠𝛼 |𝐼 ) ⪯ LM(𝑠 |𝐼 ). Moreover, any monomial𝑚 in 𝑠 |𝐼 has

the form 𝑡
𝑥 |𝐼
𝑥𝑖

where 𝑡 denotes some monomial in 𝑓𝑖 , 𝑖 ∈ 𝐼 . But

𝑚′ = 𝑡 𝑥
𝑥𝑖

is also a monomial of 𝑠 which is divisible by𝑚. By lemma

A.2,𝑚 ⪯ 𝑚′. When𝑚 = LM(𝑠 |𝐼 ), one gets LM(𝑠 |𝐼 ) ⪯ 𝑚′ ⪯ LM(𝑠)
as stated. □

328



ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Khalil Ghorbal and Maxime Bridoux

Proposition 5.2. Let 𝐷 be a polynomial derivation and let 𝑠
denote its Newton polynomial. Let 𝑞 denote the quotient of the division
of 𝐷 (𝑝) by 𝑝 for some monomial order. Then 𝑥 LM(𝑞) ⪯ LM(𝑠).

Proof. We decompose 𝑝 and 𝐷 (𝑝) over non-empty subsets 𝐼 :

𝑝 = 𝑎0 +
∑︁
𝐼

∑︁
∀ 𝑗∉𝐼
𝛼 𝑗=0

𝑎𝛼𝑥
𝛼 = 𝑎0 +

∑︁
𝐼

∑︁
∀ 𝑗∉𝐼
𝛼 𝑗=0

𝑎𝛼𝑥
𝛼
|𝐼 .

𝐷 (𝑝) =
∑︁
𝐼

∑︁
∀ 𝑗∉𝐼
𝛼 𝑗=0

𝑎𝛼𝐷 (𝑥𝛼 |𝐼 ) =
∑︁
𝐼

∑︁
∀ 𝑗∉𝐼
𝛼 𝑗=0

𝑎𝛼𝑥
𝛼−1
|𝐼 𝑠𝛼 |𝐼 .

For any 𝛼 ∈ support(𝑝), we have by lemma 5.1

𝑥 |𝐼 LM(𝑥𝛼−1 |𝐼 𝑠𝛼 |𝐼 ) = 𝑥𝛼 |𝐼 LM(𝑠𝛼 |𝐼 ) ⪯ LM(𝑝) LM(𝑠) .
Moreover

LM(𝐷 (𝑝)) ⪯ max

𝐼
{𝑥𝛼 (𝐼 )−1 |𝐼 LM(𝑠 |𝐼 )},

where 𝑥𝛼 (𝐼 )−1 |𝐼 denotes the leading monomial of

∑
∀ 𝑗∉𝐼
𝛼 𝑗=0

𝑎𝛼𝑥
𝛼−1
|𝐼 .

Thus

𝑥 |𝐼 LM(𝐷 (𝑝)) ⪯ 𝑥 |𝐼 max

𝐼
{𝑥𝛼 (𝐼 )−1 |𝐼 LM(𝑠 |𝐼 )} ⪯ LM(𝑝) LM(𝑠) .

(9)

By lemma A.2, 𝑥 |𝐼 ⪯ 𝑥 for any non-empty subset 𝐼 . Thus 𝑥 =

max𝐼 {𝑥 |𝐼 } and
𝑥 LM(𝐷 (𝑝)) = max

𝐼
{𝑥 |𝐼 } LM(𝐷 (𝑝)) = max

𝐼
{𝑥 |𝐼 LM(𝐷 (𝑝))} .

By eq. (9), 𝑥 LM(𝐷 (𝑝)) ⪯ LM(𝑝) LM(𝑠). However LM(𝑝) LM(𝑞) ⪯
LM(𝐷 (𝑝)), hence 𝑥 LM(𝑝) LM(𝑞) ⪯ LM(𝑝) LM(𝑠), and 𝑥 LM(𝑞) ⪯
LM(𝑠) as desired. □

Remark 5.3. A simple degree-based analysis of the derivation

𝐷 =
∑𝑛
𝑖=1 𝑓𝑖 𝜕𝑖 , shows that deg(𝑞) ≤ −1 + max𝑖 deg(𝑓𝑖 ). This in-

equality is also an immediate corollary of proposition 5.2 since

deg(𝑠) ≤ 𝑛 − 1 +max𝑖 deg(𝑓𝑖 ) uniformly for all monomial orders.

While uniform upper bounds tend to be appreciated, in our case,

the dependency to the monomial order is instrumental as it would

potentially lead to a mismatch on the supports of the quotients 𝑞

giving relevant necessary conditions for 𝑝 to be Darboux. More-

over, the upper bound LM(𝑠) is in general tighter to estimate the

monomials in 𝑞. For instance, for the Van der Pol dynamics, the

degree-based analysis would infer that deg(𝑞) ≤ 2, giving an es-

timate of 6 monomials for 𝑞 for all monomial orders. For DLex21,
𝑥 LM(𝑞) ⪯ LM(𝑠) gives only 4 monomials and the upper bound

decreases even to 3 for other weight orders.

Let’s consider example 4.1 and recall its derivation 𝐷 = 𝑥2𝜕1 +
((1 − 𝑥2

1
)𝑥2 − 𝑥1)𝜕2. In this case 𝐼 can be either {1}, {2} or {1, 2}:

𝑠𝛼 | {1} = 𝛼1 𝑓1
𝑥1
𝑥1

= 𝛼1𝑥2

𝑠𝛼 | {2} = 𝛼2 𝑓2
𝑥2
𝑥2

= 𝛼2 (−𝑥21𝑥2 + 𝑥2 − 𝑥1)
𝑠 = 𝑠𝛼 | {1,2} = 𝛼1 𝑓1

𝑥
𝑥1
+ 𝛼2 𝑓2 𝑥

𝑥2

= −𝛼2𝑥31𝑥2 + 𝛼1𝑥
2

2
+ 𝛼2𝑥1𝑥2 − 𝛼2𝑥21 .

Their Newton polytopes are depicted in fig. 1. Each dot corresponds

to a monomial 𝑡
𝑥 |𝐼
𝑥𝑖

in 𝑠𝛼 |𝐼 . One can appreciate the fact that New-

ton polytopes are over-approximations of the actual supports (for

instance 𝑥2
1
𝑥2 is in 𝑠 but not in 𝑠𝛼 for any 𝛼).

𝑠 = 𝑠 | {1,2}
𝑠 | {1}

𝑠 | {2}
𝑖

𝑗

Figure 1: Newton polytopes (Van der Pol).

Proposition 5.2 provides a key abstraction to reason about 𝑞

without computing it. We exploit such abstraction below to select

weight monomial orders that minimize the size of 𝑞. Let |𝑚 |mord
denote the number of monomials less than𝑚 for a given mono-

mial order mord. We drop the index mord when it’s clear from the

context. Proposition 5.2 implies that LM(𝑞) ≺ LM(𝑠) and therefore

|LM(𝑞) | < |LM(𝑠) | for any monomial order. To minimize |LM(𝑞) |
over monomial orders, it then suffices to minimize |LM(𝑠) | (which
depends only on 𝐷).

Let LM(𝑠) = 𝑥𝛽 for some 𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ N𝑛 . We restrict

ourselves to weight orders𝑤Lexwhere𝑤 ∈ N𝑛 is a positive weight

vector, and seek to minimize |LM(𝑠) | over𝑤Lex𝜎 where 𝜎 ranges

over the 𝑛! permutations of the variables. (DLex are particular cases
with𝑤 = (1, . . . , 1).)

Proposition 5.4. Let 𝑠 denote the Newton polynomial for a poly-
nomial derivation 𝐷 . Fix a positive weight vector 𝑤 ∈ N𝑛 and let
𝑤Lex𝜎 denote the weight monomial order with 𝑥𝜎 (1) ≻ · · · ≻ 𝑥𝜎 (𝑛) .
Assume that the leading term 𝑥𝛽 of 𝑠 is the same for all 𝜎 . Let 𝜎∗

denote a permutation such that𝑤𝜎∗ (1)𝛽𝜎∗ (1) ≤ · · · ≤ 𝑤𝜎∗ (𝑛)𝛽𝜎∗ (𝑛) .
Then the monomial order𝑤Lex𝜎∗ minimizes |LM(𝑠) | over𝑤Lex𝜎 .

Proof. For𝑤Lex𝜎 , if 𝑥
𝛼 ⪯ 𝑥𝛽 then |𝛼 |𝑤 ≤ |𝛽 |𝑤 (the weight of

a monomial is defined at beginning of section 2). The size of the

set {𝑥𝛼 | |𝛼 |𝑤 < |𝛽 |𝑤} is independent from the permutation 𝜎 . It

thus suffices to minimize the size of {𝑥𝛼 | 𝑥𝛼 ⪯ 𝑥𝛽 ∧ |𝛼 |𝑤 = |𝛽 |𝑤}
when 𝜎 ranges over the permutations. The stated result is then an

immediate corollary of proposition C.3 (cf. appendix C). □

For the running example and DLex𝜎 orders, applying proposi-

tion 5.2 to 𝑠 (shown in fig. 1), one gets 𝑥1𝑥2 LM(𝑞) ⪯ LM(𝑠) =
𝑥3
1
𝑥2 = 𝑥𝛽 (for all DLex𝜎 orders). By proposition 5.4, DLex21 min-

imizes the size of 𝑞 over all DLex𝜎 orders since 𝛽2 = 1 ≤ 3 = 𝛽1.

The reason why we computed 𝑞 and 𝑐𝑖, 𝑗 w.r.t. DLex21 at the end of

section 4 is now justified.

Remark 5.5. For a fixed weight vector𝑤 , the hypothesis in propo-

sition 5.4 requiring that the leading monomial of 𝑠 should be the

same for 𝑤Lex𝜎 for all 𝜎 is not really a limitation. It suffices to

perturb slightly the slope defined by 𝑤 to make the requirement

holds for some other𝑤 ′. For instance, the weight vector𝑤 = (1, 3)
doesn’t satisfy the requirement for the Newton polytope 𝑠 in fig. 1.

It suffices then to consider𝑤 ′ = (1, 4) or𝑤 ′ = (1, 1).

Our strategy is to consider optimal weight monomial orders

suggested by the vertices of the Newton polytope 𝑠 and to compute
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the quotients for such orders using algorithm 2. By equating the

quotients, one thus gets necessary conditions on the coefficients of

𝑝 for 𝑝 to be Darboux.

We further observe that proposition 5.2 can be used to show that,

for 𝑝 to be Darboux, the support of 𝑞 is tightly over-approximated

by the Newton polytope 𝑠 shifted by (−1, . . . ,−1). Remarkably, a

similar result was shown in [4, Proposition 6] where it was used to

provide sufficient criteria for the existence of rational first integrals.

We conclude by applying our strategy for the running exam-

ple 4.1. Vertices (0, 2) and (3, 1) of the Newton polytope 𝑠 cor-

respond to leading monomials for the respective weight orders

𝑤 = (1, 4) and 𝑤 = (1, 1). Proposition 5.4 applies in both cases

and suggests the monomial orders𝑤Lex12 and DLex21. We already

computed the quotient for DLex21. For𝑤Lex12, algorithm 2 gives

the following expression where the coefficients 𝑔𝑖 denote some

expressions that we don’t explicit for conciseness:

𝑞𝑤 = 𝑔2𝑥
2

1
+ 𝑔1𝑥1 + 𝑔0 . (10)

The supports mismatch between the quotients obtained for

DLex21 and𝑤Lex12 provides the following necessary condition.

Proposition 5.6. For the Van der Pol dynamic, for 𝑝 to be Darboux,
it is necessary that 𝑎𝑑1−2,𝑑2+1 = 0. Therefore

𝑞 = −𝑑2𝑥21 + 𝑑2 + (1 + 𝑑1)𝑎𝑑1+1,𝑑2−1 = −𝑑2𝑥
2

1
+ 𝑞′

0
.

Proof. For 𝑝 to be Darboux, the expression of 𝑞 in eq. (4) and

𝑞𝑤 in eq. (10) must be equal. The supports of 𝑞 and 𝑞𝑤 differ by 𝑥2
which is present in 𝑞 but not in 𝑞𝑤 . Thus the coefficient of 𝑥2 in

𝑞 has to vanish, that is 𝑎𝑑1−2,𝑑2+1 = 0. This in turn simplifies the

constant 𝑞0 in eq. (5) to 𝑞′
0
= 𝑑2 + (1 + 𝑑1)𝑎𝑑1+1,𝑑2−1. □

As an immediate consequence, the expression of 𝑐𝑖, 𝑗 of eq. (6)

simplifies to

𝑐𝑖, 𝑗 = −( 𝑗 + 1)𝑎𝑖−1, 𝑗+1 + ( 𝑗 − 𝑞′0)𝑎𝑖, 𝑗
+ (𝑖 + 1)𝑎𝑖+1, 𝑗−1 + (𝑑2 − 𝑗)𝑎𝑖−2, 𝑗 . (11)

Fig. 2 is convenient to appreciate which coefficients of 𝑝 contribute

to 𝑐𝑖, 𝑗 where an arrow (𝑖′, 𝑗 ′) → (𝑖, 𝑗) intuitively means that 𝑎𝑖′, 𝑗 ′

contributes to 𝑐𝑖, 𝑗 . The dependency to 𝑎𝑑1+1,𝑑2−1 (which appears

in 𝑞′
0
) is omitted as this particular coefficient behaves like a con-

stant with respect to the varying coefficients which depend on the

selected (𝑖, 𝑗).

6 CONSTANTS’ PROPAGATION
For the generic polynomial 𝑝 to be Darboux, the remainder 𝑟 has

to identically vanish. In our settings, 𝑟 cannot be made explicit and

is only accessible via querying its coefficients. The idea is select

(𝑖 − 1, 𝑗 + 1)

(𝑖, 𝑗)
(𝑖 + 1, 𝑗 − 1)

(𝑖 − 2, 𝑗)

Figure 2: Contributions to 𝑐𝑖, 𝑗 .

simple coefficients of 𝑟 to infer additional necessary conditions on

the support of 𝑝 and its multidegree. One could for instance select

coefficients of 𝑟 that involve a unique undetermined coefficient 𝑎𝛼
of 𝑝 . Once 𝑎𝛼 is set, the information is propagated to the entire

system. The process is re-iterated until no such simplifications are

possible. If one detects a contradiction along the way then a proof

of non-existence (of nontrivial Darboux polynomials) is provided.

If the propagation stops without arriving at a contradiction, then

the user may want to provide additional directives like trying a

different monomial order or supplying additional assumptions. In

general, the presented method is not guaranteed to arrive at a

contradiction if a Darboux polynomial doesn’t exist. We observe

that the gathered necessary conditions could complement well,

at least in principle, standard generation algorithms by reducing

upfront the support of 𝑝 for a fixed multidegree 𝑑 . Indeed, solving

𝑟 = 0 is arguably the main computational bottleneck for these

procedures.

We end this section by showing the successive steps of the con-

stant propagation on our running example. Fig. 3a shows the initial

support of 𝑝 in red w.r.t. DLex21. The exponent (𝑑1 − 2, 𝑑2 + 1)
was removed by proposition 5.6. The positions of the blue patterns

illustrate how we target a coefficient of 𝑝 using the generic expres-

sion of 𝑐𝑖, 𝑗 (cf. fig. 2). Notice that when the blue pattern doesn’t

overlap with 𝑝 , it simply means that (𝑖, 𝑗) is outside the support of
the remainder 𝑟 (this gives a hint about the support of 𝑟 without

computing it). By “sliding” the (upper) blue pattern of 𝑐𝑖, 𝑗 along the

upper red diagonal of fig. 3a, all the coefficients of that diagonal

are removed. Formally:

Lemma 6.1. For all 0 ≤ ℓ ≤ 𝑑1 − 3,

𝑐ℓ+2,𝑑1+𝑑2−ℓ−1 = 0 =⇒ 𝑎ℓ,𝑑1+𝑑2−ℓ−1 = 0 .

Proof. When ℓ ≤ 𝑑1 − 3, for (𝑖, 𝑗) = (ℓ + 2, 𝑑1 +𝑑2 − ℓ − 1), there
is a unique contributor to 𝑐𝑖, 𝑗 (cf. eq. (11)), namely (𝑑2 − 𝑗)𝑎𝑖−2, 𝑗 .
Substituting 𝑖, 𝑗 , one gets −(𝑑1 − ℓ − 1)𝑎ℓ,𝑑1+𝑑2−ℓ−1 = 0. The result

follows since ℓ ≤ 𝑑1 − 3 implies −2 ≥ −(𝑑1 − ℓ − 1). □

The same simplification holds by repeatedly sliding the blue

pattern along the successive upper diagonals of 𝑝 (for 𝑗 > 𝑑2). The

shape of the polynomial 𝑝 is “trimmed” from its original triangular

form to a staircase of slope − 1

3
, as shown in fig. 3b. The same

reasoning actually holds for the lower diagonals.

Lemma 6.2. For 1 ≤ ℓ ≤ 𝑑2, 𝑐𝑑1+ℓ+2,𝑑2−ℓ = 0 =⇒ 𝑎𝑑1+ℓ,𝑑2−ℓ = 0.

Proof. Apply eq. (11) with (𝑖, 𝑗) = (𝑑1 + ℓ + 2, 𝑑2 − ℓ). There is
a unique contributor to 𝑐𝑖, 𝑗 , namely (𝑑2 − 𝑗)𝑎𝑖−2, 𝑗 . One thus gets
𝑐𝑖, 𝑗 = −((𝑑2 − ℓ) − 𝑑2)𝑎𝑑1+ℓ,𝑑2−ℓ = ℓ𝑎𝑑1+ℓ,𝑑2−ℓ . (When ℓ = 0, the

equation is trivial and doesn’t imply any additional constraint on

𝑎𝑑1,𝑑2 = LC(𝑝) = 1.) □

Likewise, by sliding the pattern along the successive lower di-

agonals, the support of 𝑝 gets further simplified to the one shown

in fig. 3b. Observe how the final shape of 𝑝 coincides with the two

left slopes of the blue pattern used to trim 𝑝 . The propagation of

zeros is achieved and the predicate 𝑃𝑑 (𝑖, 𝑗) is updated to

𝑃 ′
𝑑
(𝑖, 𝑗) := 𝑖, 𝑗 ≥ 0 ∧ (𝑖 + 3 𝑗 ≤ 𝑑1 + 3𝑑2) ∧ (𝑖 − 𝑗 ≤ 𝑑1 − 𝑑2) . (12)
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𝑖

𝑗

𝑝

(𝑑1, 𝑑2)

(a) Initial support (DLex).

𝑖

𝑗

𝑝

1

𝑑1

𝑑2

(b) Diagonals trimmed (DLex).

𝑖

𝑗

𝑝

(𝑑1, 𝑑2)

(c) Canonical shape.

Figure 3: Successive (truncated) supports of 𝑝 after constants propagation for example 4.1.

Remark 6.3 (Canonical shape). The shape of 𝑝 depicted in fig. 3b

can be simplified further by considering a weight order with𝑤 =

(1, 42) say. Theoretically, the weight vector𝑤 = (1, 𝑑1 + 1) would
remove all the monomials with 𝑗 > 𝑑2 leading to the reduced

(asymptotic) shape of 𝑝 of fig. 3c. This particular shape is canonical
in the sense that it doesn’t depend on any monomial order: all

monomials of 𝑝 divides LM(𝑝) and are therefore lower than LM(𝑝)
for any monomial order by lemma A.2.

We further propagate one more constant, namely LC(𝑝) = 1. For

DLex21, this is achieved by positioning the blue patterns as shown

in fig. 3b where the coefficients appear as labels.

Lemma 6.4. Assume the predicate 𝑃 ′
𝑑
(𝑖, 𝑗) for 𝑝 . Then 𝑐𝑑1−1,𝑑2+1 =

0 =⇒ 𝑎𝑑1−3,𝑑2+1 = 𝑑1.

Proof. Apply eq. (11) with (𝑖, 𝑗) = (𝑑1 − 1, 𝑑2 + 1). We only need

to account for 2monomials. Thus 𝑐𝑖, 𝑗 = (𝑖+1)𝑎𝑖+1, 𝑗−1+(𝑑2− 𝑗)𝑎𝑖−2, 𝑗 .
Since LC(𝑝) = 1, we get 𝑐𝑑1−1,𝑑2+1 = 𝑑1 − 𝑎𝑑1−3,𝑑2+1. □

Lemma 6.5. Assume the predicate 𝑃 ′
𝑑
(𝑖, 𝑗) for 𝑝 . Then 𝑐𝑑1+1,𝑑2−1 =

0 =⇒ 𝑎𝑑1−1,𝑑2−1 = 𝑑2.

Proof. Apply eq. (11) with (𝑖, 𝑗) = (𝑑1 + 1, 𝑑2 − 1). We only need

to account for 2 monomials. Thus 𝑐𝑖, 𝑗 = −( 𝑗 + 1)𝑎𝑖−1, 𝑗+1 + (𝑑2 −
𝑗)𝑎𝑖−2, 𝑗 . Since LC(𝑝) = 1, we get 𝑐𝑑1+1,𝑑2−1 = −𝑑2 +𝑎𝑑1−1,𝑑2−1. □

The propagation of 𝑑1, 𝑑2 can now carry on (upwards) along the

boundaries of 𝑝 prescribed by 𝑃 ′
𝑖, 𝑗

until reaching the axes (𝑖 = 0

and 𝑗 = 0) at which point, some conditions on 𝑑1, 𝑑2 will have to

be satisfied. Instead of doing so, we present in the remaining of

this section a “shortcut” that leads to the same result. The idea is to

explore the coefficients in the vicinity of LM(𝑝) looking for a local
contradiction that do not require reaching the axes. Such strategy

is appealing as it attempts to minimize the size of the proof.

Assuming 𝑃 ′
𝑑
(𝑖, 𝑗), the constant 𝑞′

0
in proposition 5.6 simplifies

to 𝑑2. Thus, when 𝑗 = 𝑑2, eq. (11) simplifies to

𝑐𝑖,𝑑2 = −(𝑑2 + 1)𝑎𝑖−1,𝑑2+1 + (𝑖 + 1)𝑎𝑖+1,𝑑2−1 . (13)

Pictorially, the corresponding blue pattern gets reduced to its only

2 diagonal dots when it slides along 𝑗 = 𝑑2. In particular, when

(𝑖, 𝑗) = (𝑑1 − 2, 𝑑2), on gets the following constraint on 𝑑 .

Proposition 6.6. For 𝑝 to be Darboux, |𝑑 | = 0 must hold.

Proof. Fix the monomial order to DLex21. For 𝑝 to be Darboux,

its shape is prescribed by 𝑃 ′
𝑑
(𝑖, 𝑗). Thus, for (𝑖, 𝑗) = (𝑑1 − 2, 𝑑2),

eq. (13) applies and one gets 𝑐𝑖, 𝑗 = 𝑐𝑑1−2,𝑑2 = −(𝑑2 + 1)𝑎𝑑1−3,𝑑2+1 +
(𝑑1 − 1)𝑎𝑑1−1,𝑑2−1. However 𝑎𝑑1−3,𝑑2+1 = 𝑑1 by lemma 6.4 and

𝑎𝑑1−1,𝑑2−1 = 𝑑2 by lemma 6.5. Thus 𝑐𝑖, 𝑗 = −(𝑑2+1)𝑑1+ (𝑑1−1)𝑑2 =
−𝑑1 − 𝑑2. The result follows as 𝑐𝑖, 𝑗 has to vanish. □

As a byproduct, we give a new proof for the following known

result [11] where it is stated for complex numbers in terms of

invariant algebraic curves (cf. remark 1.3):

Theorem 6.7. Assuming 𝜇 ≠ 0, the Van der Pol oscillator (ex-
ample 4.1) has no nontrivial Darboux polynomials over any field. In
particular, its limit cycle is not an algebraic curve.

Notice that the entire trimming of the shape of 𝑝 is not necessary

to prove theorem 6.7. In fact only finitely many coefficients 𝑎𝛼 , all

in the vicinity of the leader LM(𝑝), need to be assigned, namely

𝑎𝑑1−2,𝑑2+1, 𝑎𝑑1+1,𝑑2−1, 𝑎𝑑1,𝑑2−1, 𝑎𝑑1−3,𝑑2+1, 𝑎𝑑1−1,𝑑2−1, 𝑎𝑑1−2,𝑑2 .

This finite set provides a concise formal certificate that can be

checked independently to verify the claimed result.

We implemented our algorithms as a Wolfram Mathematica

package [2] and were able to automatically prove that no nontrivial

Darboux polynomial exists for the entire class of Liénard systems

as stated in [11] (the Van der Pol oscillator being in particular a

typical Liénard system).

7 CONCLUSION
The existence of an upper bound on irreducible Darboux polyno-

mials in higher dimensions is conjectured but remains out of reach.

We currently even lack sufficient or necessary algebraic criteria for

the existence of Darboux polynomials, except for simple restricted

classes of derivations. A key difficulty resides in the highly intricate

relationships that the polynomials defining the derivation have to

satisfy. We believe that the toolbox provided in this work is an

important step forward to approach the problem experimentally
with the assistance of a computer program, avoiding thereby the

cumbersome error-prone pen-and-paper computations and focus-

ing on potentially interesting patterns that could serve to sharpen

our intuitions on these challenging problems.
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A SIMPLE PROOFS
Proposition 2.1 holds for any polynomial ℎ, not just 𝐷 (𝑝). A simple

direct proof is provided below without requiring Gröbner theory.

Lemma A.1. Let ℎ and 𝑝 be two polynomials over a field. Then ℎ is
in the ideal generated by 𝑝 if and only if the remainder of the division
of ℎ by 𝑝 is zero with respect to any monomial order.

Proof. Necessity. Suppose that the ideal membership assump-

tion holds. Then, there exists a polynomial 𝑞 such that ℎ = 𝑞𝑝 .

Suppose there exists a monomial ordering such that ℎ = 𝑞′𝑝 +𝑟 and

𝑟 ≠ 0. Then 𝑟 = (𝑞 − 𝑞′)𝑝 forcing 𝑞 ≠ 𝑞′. But then LM(𝑝) divides
LM(𝑟 ) contradicting the definition of 𝑟 . (Sufficiency is trivial.) □

The following useful fact is not immediate from the definition of

monomial orders. It can however be shown using Dickson lemma

as stated in [5, Corollary 6, p72]. We provide below a direct proof.

Lemma A.2. Let 𝑚,𝑚′ denote two monomials. If 𝑚 divides 𝑚′

then𝑚 ⪯ 𝑚′ for any monomial order. (The converse doesn’t hold in
general.)

Proof. The result is immediate when 𝑚′ = 𝑚. Suppose that

𝑚′ ⪯ 𝑚. One has𝑚′ = 𝑞𝑚 for some monomial 𝑞. Suppose there

exists a monomial ordering for which𝑚 ≻𝑚′ then𝑚 ≻ 𝑞𝑚 and one

constructs a descending sequence of monomials𝑚 ≻ 𝑞𝑚 ≻ 𝑞2𝑚 ≻
. . . which must terminate (by the well-foundedness of monomial

orders). Thus there exists a finite index 𝑘 such that 𝑞𝑘𝑚 = 𝑞𝑘+1𝑚.

But then𝑚 = 𝑞𝑚 = 𝑚′, a contradiction. To see that the converse

doesn’t hold in general, consider DLex21. Then, 𝑥1 ≺ 𝑥2 but 𝑥1
doesn’t divide 𝑥2. □

B PLANAR LINEAR DYNAMICS
If 𝜇 is irrational then 𝑃𝑑 (𝑖, 𝑗) ∧ 𝐻𝑑 (𝑖, 𝑗) reduces to the singleton

(𝑑1, 𝑑2) and the only Darboux polynomial is LM(𝑝) = 𝑥𝑑 . This in

particular means that 𝑥1 and 𝑥2 are Darboux polynomials since fac-

tors of a Darboux polynomial are themselves Darboux polynomials.

Assume next that 𝜇 is rational. By substituting 𝑗 for 𝑑2−𝜇 (𝑖−𝑑1)
using 𝐻𝑑 (𝑖, 𝑗), the conjunction 𝑃𝑑 (𝑖, 𝑗) ∧ 𝐻𝑑 (𝑖, 𝑗) reduces to the

following predicate on 𝑖:

𝑃𝑑 (𝑖) :=
(
(1 − 𝜇) (𝑖 − 𝑑1) < 0 ∧ 𝜇 (𝑖 − 𝑑1) ≤ 𝑑2 ∧ 𝑖 ≥ 0

)
(14)

∨
(
(1 − 𝜇) (𝑖 − 𝑑1) = 0 ∧ 𝜇 (𝑖 − 𝑑1) ≤ 𝑑2 ∧ 𝑖 ≥ 𝑑1

)
(15)

which involves the parameter 𝜇 as well as the multidegree 𝑑 =

(𝑑1, 𝑑2) of 𝑝 .
If 𝜇 = 1 then 𝑃𝑑 (𝑖) reduces to 𝑑1 ≤ 𝑖 ≤ |𝑑 |, 𝑗 = |𝑑 | − 𝑖 . The

optimal value of |𝑑 | is𝑑2 reached for𝑑1 = 0. Thus any homogeneous

polynomial is a Darboux polynomial.

If 𝜇 ≠ 1, eq. (15) gives 𝑖 = 𝑑1, and (𝑖, 𝑗) = (𝑑1, 𝑑2). So LM(𝑝) is
the unique monomial of degree |𝑑 | in 𝑝 .

Using eq. (14), the smallest |𝑑 | for which a Darboux polynomial

involving both 𝑥1 and 𝑥2 exists satisfies 𝑑2 = max{0, 𝜇 (𝑖 − 𝑑1)}.
When 𝜇 (𝑖 − 𝑑1) < 0, 𝑑2 = 0, |𝑑 | = 𝑑1, eq. (14) implies 0 < 𝜇 < 1

(recall that 𝑖 < |𝑑 |). Thus 𝑗 = 𝜇 (𝑑1 − 𝑖). In this case, the smallest

𝑑1 − 𝑖 for 𝑗 to be a positive integer is the denominator of 𝜇. Thus,

assuming 𝜇 =
𝜇1
𝜇2

is the irreducible form of 𝜇, the smallest |𝑑 | would
be 𝜇2 reached for 𝑖 = 0. Thus (𝑖, 𝑗) = (0, 𝜇1) and

𝑝 = 𝑥
𝜇2
1
+ 𝑎0,𝜇1𝑥

𝜇1
2

is an irreducible Darboux polynomial (with a cofactor 𝜇1) for any

constant 𝑎0,𝜇1 . (Equivalently, 𝑥
𝜇2𝑦−𝜇1 is an invariant rational func-

tion.)

If 𝜇 (𝑖−𝑑1) ≥ 0, 𝑑2 = 𝜇 (𝑖−𝑑1) and 𝑗 = 0. We observe that 𝑑1 = |𝑑 |
implies 𝜇 = 0 or 𝑖 = 𝑑1. The former is impossible by assumption

and the latter is impossible by eq. (14). Therefore 𝜇 =
𝑑2

𝑖−𝑑1 and

𝜇 > 1 or 𝜇 < 0 (since 0 < 𝜇 < 1 implies |𝑑 | < 𝑖 and 𝜇 = 1 was

already discussed). Let 𝜇 =
±𝜇1
𝜇2

be the irreducible form of 𝜇 where

𝜇1, 𝜇2 > 0.
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If 𝜇 > 1, then the smallest 𝑑2 is 𝜇1, 𝑖 = 𝑑1 + 𝜇2, and the smallest

|𝑑 | is reached for 𝑑1 = 0. Thus (𝑖, 𝑗) = (𝜇2, 0) and
𝑝 = 𝑥

𝜇1
2
+ 𝑎𝜇2,0𝑥

𝜇2
1

is an irreducible Darboux polynomial (with a cofactor 𝜇1) for any

constant 𝑎𝜇2,0. (Equivalently, 𝑥
−𝜇2
1

𝑥
𝜇1
2

is an invariant rational func-

tion.)

Finally, if 𝜇 < 0, then the smallest 𝑑2 is 𝜇1, 𝑖 = 𝑑1 − 𝜇2, and the

smallest |𝑑 | is 𝜇1 + 𝜇2 obtained for 𝑖 = 0. So (𝑖, 𝑗) = (0, 0) and
𝑝 = 𝑥

𝜇2
1
𝑥
𝜇1
2
+ 𝑎0,0

is an irreducible Darboux polynomial (with a cofactor 0) for any

constant 𝑎0,0. (Equivalently, 𝑥
𝜇2
1
𝑥
𝜇1
2

is an invariant function.)

C DECREASING CHAINS OF MONOMIALS
Recall that the number of monomials of degree 𝑘 ∈ N in 𝑛 ≥ 1

variables is [𝑘, 𝑛] :=
(𝑘+𝑛−1
𝑛−1

)
. The monotonicity of [𝑘, 𝑛] w.r.t. to

its first argument is immediate: if 𝑘 ≤ 𝑘′, then [𝑘, 𝑛] ≤ [𝑘′, 𝑛].
The same holds w.r.t. its second argument since [𝑘, 𝑛] =

(𝑘+𝑛−1
𝑘

)
: if

𝑛 ≤ 𝑛′, then [𝑘, 𝑛] ≤ [𝑘, 𝑛′].
Let Γ(𝛽, 𝜎), 𝛽 ∈ N𝑛 , 𝜎 a permutation of {1, . . . , 𝑛}, denote the

number of monomials of degree |𝛽 | lower than 𝑥𝛽 for the monomial

order DLex𝜎 with 𝑥𝜎 (1) ≻ · · · ≻ 𝑥𝜎 (𝑛) . For each 𝛼1, 0 ≤ 𝛼1 < 𝛽𝜎 (1) ,
there are [|𝛽 | − 𝛼1, 𝑛 − 1] monomials of degree |𝛽 | which are lower

than 𝑥𝛽 . Similarly, when 𝛼1 = 𝛽𝜎 (1) , for each 𝛼2, 0 ≤ 𝛼2 < 𝛽𝜎 (2) ,
there are [|𝛽 | − 𝛽𝜎 (1) − 𝛼2, 𝑛 − 2] monomials of degree |𝛽 | which
are lower than 𝑥𝛽 , etc. The general formula for Γ(𝛽, 𝜎) is then

𝛽𝜎 (1)−1∑︁
𝛼1=0

[|𝛽 | − 𝛼1, 𝑛 − 1] +
𝛽𝜎 (2)−1∑︁
𝛼2=0

[|𝛽 | − 𝛽𝜎 (1) − 𝛼2, 𝑛 − 2]+

· · · +
𝛽𝜎 (𝑛−1)−1∑︁
𝛼𝑛−1=0

[|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑛−2) − 𝛼𝑛−1, 1] . (16)

Lemma C.1. Let 𝜎 denote a permutation and suppose that there
exists 𝑖 , such that 𝛽𝜎 (𝑖 ) > 𝛽𝜎 (𝑖+1) . Let 𝜎′ denote the permutation
obtained from 𝜎 by swapping 𝜎 (𝑖) and 𝜎 (𝑖+1), that is 𝜎′ (𝑖) = 𝜎 (𝑖+1),
𝜎′ (𝑖 + 1) = 𝜎 (𝑖), and 𝜎′ ( 𝑗) = 𝜎 ( 𝑗) for all indices 𝑗 distinct from 𝑖

and 𝑖 + 1. Then Γ(𝛽, 𝜎′) < Γ(𝛽, 𝜎). In words, when 𝛽𝜎 (𝑖 ) > 𝛽𝜎 (𝑖+1) ,
by swapping 𝑥𝜎 (𝑖 ) and 𝑥𝜎 (𝑖+1) in the variable ordering, the number
of monomials of total degree |𝛽 | lower that 𝑥𝛽 decreases.

Proof. By definition, Γ(𝛽, 𝜎) and Γ(𝛽, 𝜎′) differ by the two sums

𝑆𝑖 =

𝛽𝜎 (𝑖 )−1∑︁
𝛼𝑖=0

[|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑖−1) − 𝛼𝑖 , 𝑛 − 𝑖]

𝑆𝑖+1 =
𝛽𝜎 (𝑖+1)−1∑︁
𝛼𝑖+1=0

[|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑖 ) − 𝛼𝑖+1, 𝑛 − 𝑖 − 1]

in Γ(𝛽, 𝜎) which are respectively replaced in Γ(𝛽, 𝜎′) by

𝑆 ′𝑖 =
𝛽𝜎 (𝑖+1)−1∑︁

𝛼𝑖=0

[|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑖−1) − 𝛼𝑖 , 𝑛 − 𝑖]

𝑆 ′𝑖+1 =
𝛽𝜎 (𝑖 )−1∑︁
𝛼𝑖+1=0

[|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑖−1) − 𝛽𝜎 (𝑖+1) −𝛼𝑖+1, 𝑛 − 𝑖 − 1]

One thus gets 𝑆𝑖 − 𝑆 ′𝑖
𝛽𝜎 (𝑖 )−1∑︁

𝛼𝑖=𝛽𝜎 (𝑖+1)

[|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑖−1) − 𝛼𝑖 , 𝑛 − 𝑖]

=

𝛽𝜎 (𝑖 )−𝛽𝜎 (𝑖+1)−1∑︁
𝑘=0

[|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑖−1) − 𝛽𝜎 (𝑖+1) −𝑘, 𝑛− 𝑖] .

By the change of variables 𝑘 = 𝛽𝜎 (𝑖 ) − 𝛽𝜎 (𝑖+1) + 𝛼𝑖+1, for the index
𝛼𝑖+1, the sum 𝑆𝑖+1 can be equivalently rewritten as

𝛽𝜎 (𝑖 )−1∑︁
𝑘=𝛽𝜎 (𝑖 )−𝛽𝜎 (𝑖+1)

[|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑖−1) − 𝛽𝜎 (𝑖+1) − 𝑘, 𝑛 − 𝑖 − 1] .

Thus one gets for 𝑆 ′
𝑖+1 − 𝑆𝑖+1

𝛽𝜎 (𝑖 )−𝛽𝜎 (𝑖+1)−1∑︁
𝑘=0

[|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑖−1) − 𝛽𝜎 (𝑖+1) − 𝑘, 𝑛 − 𝑖 − 1]

By monotonicity of [·, ·] w.r.t. its second argument, for all 𝑘 , 0 ≤
𝑘 ≤ 𝛽𝜎 (𝑖 ) − 𝛽𝜎 (𝑖+1) − 1,

[|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑖−1) − 𝛽𝜎 (𝑖+1) − 𝑘, 𝑛 − 𝑖 − 1]
< [|𝛽 | − 𝛽𝜎 (1) − · · · − 𝛽𝜎 (𝑖−1) − 𝛽𝜎 (𝑖+1) − 𝑘, 𝑛 − 𝑖]

Thus 𝑆 ′
𝑖+1 − 𝑆𝑖+1 < 𝑆𝑖 − 𝑆 ′

𝑖
or equivalently 𝑆 ′

𝑖+1 + 𝑆
′
𝑖
< 𝑆𝑖+1 + 𝑆𝑖

making Γ(𝛽, 𝜎′) < Γ(𝛽, 𝜎). □

Proposition C.2. Let 𝛽 ∈ N𝑛 and let 𝜎 denote a permutation of
{1, . . . , 𝑛}. Then Γ(𝛽, 𝜎) is minimal for 𝜎 if and only if 𝛽𝜎 (1) ≤ · · · ≤
𝛽𝜎 (𝑛) .

Proof. Necessity. By contradiction, suppose that Γ(𝛽, 𝜎) is min-

imal for a permutation 𝜎 that doesn’t satisfy 𝛽𝜎 (1) ≤ · · · ≤ 𝛽𝜎 (𝑛) .
That is, there exists an index 𝑖 such that 𝛽𝜎 (𝑖 ) > 𝛽𝜎 (𝑖+1) . Lemma C.1

provides a permutation 𝜎′ for which Γ(𝛽, 𝜎′) < Γ(𝛽, 𝜎) contradict-
ing the minimality of Γ(𝛽, 𝜎).

Sufficiency. Suppose that 𝛽𝜎 (1) ≤ · · · ≤ 𝛽𝜎 (𝑛) . Let 𝜎
′ ≠ 𝜎 denote

a permutation such that Γ(𝛽, 𝜎′) is minimal. Then 𝛽𝜎 ′ (1) ≤ · · · ≤
𝛽𝜎 ′ (𝑛) . Since the ordering on natural numbers is total, one gets

𝛽𝜎 (𝑖 ) = 𝛽𝜎 ′ (𝑖 ) for all 𝑖 . Thus, by eq. (16), Γ(𝛽, 𝜎′) = Γ(𝛽, 𝜎) and
Γ(𝛽, 𝜎) is also minimal. □

Generalizing the degree by a positive weight𝑤 ∈ N𝑛 , one defines
Γ𝑤 (𝛽, 𝜎) as the number of monomials of weight |𝛽 |𝑤 lower than

𝑥𝛽 for𝑤Lex with 𝑥𝜎 (1) ≻ · · · ≻ 𝑥𝜎 (𝑛) . Proposition C.2 generalizes

as follows.

Proposition C.3. Let 𝛽 ∈ N𝑛 and let 𝜎 denote a permutation of
{1, . . . , 𝑛}. Then Γ𝑤 (𝛽, 𝜎) is minimal for𝜎 if and only if𝑤𝜎 (1)𝛽𝜎 (1) ≤
· · · ≤ 𝑤𝜎 (𝑛)𝛽𝜎 (𝑛) .

Proof. (Sketch) For a positive weight vector 𝑤 , the function

Γ𝑤 (𝛽, 𝜎) is defined as in eq. (16), except that 𝛽𝜎 (𝑖 ) and 𝛼𝑖 are scaled
by 𝑤𝜎 (𝑖 ) . By setting 𝛼 ′

𝑖
to 𝑤𝜎 (𝑖 )𝛼𝑖 , each sum 𝑆𝑖 defining Γ𝑤 (𝛽, 𝜎)

becomes

𝑤𝜎 (𝑖 )𝛽𝜎 (𝑖 )−1∑︁
𝛼 ′
𝑖
=0

[|𝛽 |𝑤 −𝑤𝜎 (1)𝛽𝜎 (1) − · · · −𝑤𝜎 (𝑖−1)𝛽𝜎 (𝑖−1) − 𝛼 ′𝑖 , 𝑛 − 𝑖],

and the proofs carry on very similarly to the ones seen above. □
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