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1. Introduction1

In safety verification of dynamical systems, one is typically concerned with2

ensuring that by initializing a system in some set of states X0 ⊆ X (where X is3

the state space), the system will never evolve into an unsafe state (belonging to4

some Xu ⊆ X). When the system is given by ordinary differential equations, one5

may attempt to solve the safety verification problem by showing that the solution6

to the initial value problem for any initial value x0 ∈ X0 cannot enter the unsafe7

region, that is x(x0, t) /∈ Xu for all t ≥ 0, where x(x0, t) is the state of the system8

at time t w.r.t. the initial value x0. The safety verification problem is in this case9

equivalent to showing that the intersection of the reachable set {x(x0, t) ∈ X |10

t ≥ 0} with the set of unsafe states is empty. However, solutions to ordinary11

differential equations will rarely be available in closed form1; even when they are,12

their description will often be much more involved than that of the differential13

equations themselves. Instead, it is possible to work with the differential equations14

directly [28, 22, 23, 31].15

A fundamental notion in safety verification is that of a (positively) invariant16

set. In fact, exact reachable sets of any given state x0 of the system are the smallest17

positively invariant sets one can hope to find that include x0. However, obtaining18

and working with exact descriptions of reachable sets is not always practical or19

even possible. This does not mean that system safety cannot be established by20

other means - if one finds a larger positively invariant set, I ⊆ X , with a simpler21

(preferably algebraic, or semi-algebraic) description and which (i) contains the set22

of initial states (i.e. X0 ⊆ I) and (ii) does not intersect the set of unsafe states (i.e.23

I ∩Xu = ∅), then one can soundly conclude that the system is safe.24

We focus on methods for checking whether a given set defines a positively25

invariant region, i.e. one from which no system trajectory can escape in posi-26

tive time (t ≥ 0). In particular, we consider the important case of algebraic and27

semi-algebraic sets, i.e. sets that can be defined by polynomial equations and fi-28

nite boolean combinations of polynomial equations and inequalities, respectively.29

We review previously reported methods and introduce extensions to automatically30

check positive invariance of semi-algebraic sets. Our work aims at identifying31

sweetspots in the various methods in order to suggest efficient strategies for in-32

variant checking inside a deductive prover.33

Contributions. We extend our earlier analysis presented in [12] to include34

proof rules that are concerned with checking positive invariance of semi-algebraic35

1That is explicitly given in terms of elementary functions and usual operators.
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sets. In addition to recalling proof rules reported previously, we introduce in Sec-36

tion 5.2 a new sufficient condition that we term NSSBC for Non-smooth Strict37

Barrier Certificate. NSSBC is able to prove positive invariance in a special class38

of closed semi-algebraic sets and can be seen as a generalization of strict barrier39

certificates introduced by Prajna [26]. We also investigate in Section 7.4 the effect40

of square-free decomposition—which generalizes the square-free reduction—on41

the deductive power of proof rules. Finally, we complement our theoretical results42

with a practical assessment of the proof rule performance on a set of benchmarks43

and explore interesting connections between the deductive power and the practical44

running time performance (Section 8.2).45

2. Preliminaries46

We consider autonomous2 polynomial vector fields (see Def. 1 below).47

Let x = (x1, . . . , xn) ∈ Rn, and x(t) = (x1(t), . . . , xn(t)), where xi :48

R → R, t 7→ xi(t). The ring of polynomials over the reals will be denoted49

by R[x1, . . . , xn].50

Definition 1 (Polynomial Vector Field). Let pi, 1 ≤ i ≤ n, be multivariate poly-51

nomials of the polynomial ring R[x1, . . . , xn]. A polynomial vector field, p, is an52

explicit system of ordinary differential equations with polynomial right-hand side:53

dxi
dt

= ẋi = pi(x), 1 ≤ i ≤ n . (1)

Since polynomial functions are smooth (C∞, i.e. they have derivatives up to54

any order), they are locally Lipschitz-continuous. By the Cauchy-Lipschitz the-55

orem (a.k.a. Picard-Lindelöf) [15], there exists a unique maximal solution to the56

initial value problem (ẋ = p, x(0) = x0) defined for t in some non-empty open57

interval; it is often denoted by x(t), or more explicitly as ϕt(x0).58

For S ⊆ Rn, if ϕt(x0) ∈ S for all t ≥ 0 and x0 ∈ S, we say that the set S59

is a (positive) invariant under the flow of p. If S is described by a quantifier-free60

formula of real arithmetic (i.e. is a semi-algebraic set satisfying a finite boolean61

combination of polynomial equalities and inequalities), positive invariance of S62

2That is, the rate of change of the system over time explicitly depends only on the system’s
state, not on time. Non-autonomous polynomial systems with time-dependence can be made
autonomous by extending the state of the system with an extra clock variable that reflects the
progress of time and replacing every instance of the time variable with the new clock variable.
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is semantically equivalent to the validity of the following formula in differential63

dynamic logic [21]:64

S → [ẋ = p] S. (2)

A result about positive invariance of closed sets under the flow of locally65

Lipschitz-continuous ODEs, known as the Nagumo theorem [19, 32, Chapter 10,66

XV–XVI, pp. 117-119], gives a powerful (but generally intractable) geometric67

characterization of positively invariant closed sets. Nagumo’s theorem requires68

the geometric notion of sub-tangential vectors to a set.69

Definition 2 (Sub-tangent vector). A vector v ∈ Rn is sub-tangential to a set
S ⊆ Rn at x ∈ S if

lim inf
λ→0+

dist (S,x+ λv)

λ
= 0,

where dist denotes the Euclidean set distance, i.e. dist(S,x) ≡ infy∈S‖x − y‖.70

The set of all sub-tangent vectors to a set S at x ∈ S is known as the contingent71

cone to S at x and is denoted Kx(S).72

Theorem 3 (Nagumo’s Theorem). Given a continuous system ẋ = p(x) and73

assuming that solutions exist and are unique inside some open set O ⊆ Rn, let74

S ⊂ O be a closed set. Then, S is positively invariant under the flow of the system75

if and only if p(x) is sub-tangential to S (or equivalently, p(x) ∈ Kx(S), where76

Kx(S) is the set of all sub-tangential vectors to S at x, known as the contingent77

cone) for all x ∈ bdr(S), where bdr(S) is the boundary of S.378

Using Nagumo’s Theorem, the following proof rule is sound and complete79

when S is a closed semi-algebraic set:80

(Nagumo)
∀ x ∈ bdr(S). p(x) ∈ Kx(S)

S → [ẋ = p] S
.

More recently, a different characterization of positively invariant sets (de-81

scribed in detail in subsequent sections) was reported in [16].82

In the important special case where a closed set S is described by the equation83

h = 0, with h ∈ R[x1 . . . , xn], positive invariance of h = 0 is semantically84

equivalent to the validity of the formula:85

(h = 0)→ [ẋ = p](h = 0). (3)

3The border of a set S is often denoted by ∂S. We will use bdr(S) instead to avoid confusion
with partial derivatives.
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Geometrically, the equation h = 0 represents the set of real roots of the polyno-86

mial h. Such a set is known as real algebraic set or a real variety and will be87

henceforth denoted by VR(h). Algebraic sets are intimately related to sets of poly-88

nomials with special algebraic properties called ideals. Ideals are closed under89

addition and external multiplication; that is, if I is an ideal, then for all h1, h2 ∈ I ,90

the sum h1 + h2 ∈ I; and if h ∈ I , then, qh ∈ I , for all q ∈ R[x1 . . . , xn]. To91

say that the real variety VR(h) of the ideal generated by h is invariant under the92

flow of the vector field p is equivalent to the statement that the equation h = 0 is93

invariant.94

We will use ∇h to denote the gradient of h : Rn → R, that is the vector of its95

partial derivatives
(
∂h
∂x1
, . . . , ∂h

∂xn

)
. The Lie derivative of h along the vector field p96

gives the rate of change of h along the flow of ẋ = p(x) and is formally defined97

as the scalar product of∇h and p.98

Lp(h)
def
= ∇h · p . (4)

Higher-order Lie derivatives are defined recursively as L(k+1)
p (h) = Lp(L

(k)
p (h)),99

with L
(0)
p (h) = h.100

3. Proof Rules for Algebraic Sets101

We recall five important proof rules for checking invariance of polynomial102

equalities, or equivalently the validity of Equation 3. In Figure 1, FI refers to in-103

variant polynomial functions.4 The premise of the Polynomial-scale consecution104

proof rule [28], P-c in Figure 1, requires Lp(h) to be in the ideal generated by h.105

The condition given in the premise is only sufficient (but is eminently suitable for106

generating invariant varieties [17]). We also consider the constant-scale consecu-107

tion proof rule [28, 31], denoted by C-c. The premise of proof rule C-c requires108

that Lp(h) = λh, where λ is a scalar, not a polynomial as in P-c. It is therefore a109

simple special case of P-c. When λ = 0, one obtains the premise of the proof rule110

FI. It is worth noting that the condition in the premise of P-c, including its special111

case C-c, was mentioned as early as 1878 [6] and used extensively in the study of112

integrability of dynamical systems (e.g. see second integrals in [13, Chapter 2]).113

It serves as a natural extension to invariant functions, also known as first integrals,114

which are covered by the proof rule FI. The proof rule Lie gives Lie’s criterion115

[14, 20] for invariance of h = 0; this proof rule will be discussed in more depth116

4We used the notation DI= for the same proof rule in [12].
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(FI)
Lp(h) = 0

(h = 0)→ [ẋ = p](h = 0)
(C-c)

∃λ ∈ R, Lp(h) = λh

(h = 0)→ [ẋ = p](h = 0)

(Lie)
h = 0→ (Lp(h) = 0 ∧∇h 6= 0)

(h = 0)→ [ẋ = p](h = 0)
(P-c)

Lp(h) ∈ 〈h〉
(h = 0)→ [ẋ = p](h = 0)

(DRI)
h = 0→

∧N−1
i=0 L

(i)
p (h) = 0

(h = 0)→ [ẋ = p](h = 0)

Figure 1: Proof rules for checking the invariance of h = 0 w.r.t. p: FI, C-c and P-c
[28, Lemma 2], Lie [20, Theorem 2.8], DRI [10, Theorem 2]

and extended to handle tricky cases in Section 4. The last rule, DRI in Fig. 1, was117

recently introduced and characterizes (i.e. gives necessary and sufficient condi-118

tions for) invariant real varieties under the flow of polynomial vector fields [10].119

The number N in the premise of DRI is the maximum length of the ascending120

chain of polynomial ideals 〈h〉 ⊂ 〈h,Lp(h)〉 ⊂ 〈h,Lp(h),L
(2)
p (h)〉 ⊂ · · · , which121

is finite and computable [10].122

4. Extending Lie’s Criterion123

One immediate deficiency of the proof rule Lie (Fig. 1) is its inability to prove124

invariance properties for isolated points (e.g. system equilibria) for the simple125

reason that a description of such a point a = (a1, . . . , an) ∈ Rn, e.g. given by the126

sum-of-squares equation h(x) = (x1 − a1)2 + · · ·+ (xn − an)2 = 0, will have an127

extremum at a, i.e. h(a) = 0 and128

h(x) > 0 for all x ∈ Rn \ {a}. Functions whose real roots characterize129

isolated points have vanishing gradient at these roots, in this case a, and thus the130

formula h = 0 → ∇h = 0 holds. This violates the regularity condition in the131

premise of the proof rule Lie, namely:132

h = 0 −→ ∇h 6= 0 . (5)

In fact, h = 0 → Lp(h) = 0 is a necessary condition when h = 0 is an invariant133

equation. Note that simply removing Eq. (5) from the premise of the proof rule134

Lie is unsound (see e.g. [23]); that is, the condition h = 0 → Lp(h) = 0 alone is135

insufficient to prove the invariance property for h = 0. Unsoundness in the above136
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naı̈ve attempt at a generalization is a consequence of singularities that may be137

present in the variety VR(h). Singularities of VR(h) are points x ∈ VR(h) where138

the gradient of h vanishes, i.e. ∇h(x) = 0.139

Definition 4 (Singular Locus). Let h ∈ R[x1, . . . , xn], the singular locus of h = 0,
henceforth denoted SL(h), is the set of singular points, that is, points x satisfying

h = 0 ∧ ∂h

∂x1
= 0 ∧ · · · ∧ ∂h

∂xn
= 0 .

Points that are not singular are called regular. At singular points, the Lie derivative140

of h along any vector field is 0 · p = 0. To avoid these degenerate cases, the141

regularity condition (Eq. (5)) rules out singularities altogether. In the next section142

we present two extensions of Lie’s criterion that, in a similar vein to [29], partially143

overcome the strong regularity condition by treating the points on the singular144

locus separately.145

4.1. Handling Singularities146

Equilibria are points in the state space where the vector field vanishes (p =147

0) so that there is no motion. However, as seen above, Lie’s criterion cannot148

generally be applied to prove invariance properties of isolated equilibria because149

their description involves singularities. One simple way to resolve this issue is150

to drop the non-vanishing gradient condition and replace it with the proviso that151

there be no flow (that is p = 0) in the variables of the invariant candidate on152

the singular locus; this will allow singularities in the invariant candidate and will153

provide a sound proof method in which there is no need to check for non-vanishing154

gradient. Below we present two extensions to the proof rule Lie and justify their155

soundness after recalling some basic geometric notions.156

Definition 5 (Lie◦: Lie + Equilibria).

(Lie◦)
h = 0→

(
Lp(h) = 0 ∧

(
SL(h)→

∧
xi∈vars(h) pi = 0

))
(h = 0)→ [ẋ = p](h = 0)

,

where vars(h) denotes the set of state variables xi occurring in the polynomial h.157

The Lie◦ proof rule can be generalized further at the expense of adding an158

extra variable by replacing the “no flow” condition (pi = 0) for points on the159

singular locus with ∀λ. h(x+ λp(x)) = 0, where λ is a fresh symbol.160
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Definition 6 (Lie∗: Lie + Vanishing Sub-tangent).

(Lie∗)
h = 0→

(
Lp(h) = 0 ∧ (SL(h)→ h(x+ λp) = 0)

)
(h = 0)→ [ẋ = p](h = 0)

.

To prove soundness of Lie◦ and Lie∗, we appeal to the Nagumo theorem. Let161

us observe that given x ∈ bdr(S), if x + λp(x) ∈ S for all λ ∈ R, then162

dist (S,x+ λp(x)) = 0 and so p(x) is sub-tangential to S at x. This obser-163

vation is important for algebraic sets, for which bdr(S) = S, and the condition164

x+ λp(x) ∈ S translates to h(x+ λp(x)) = 0. This is the main idea behind the165

soundness of the proof rule Lie∗.166

Proposition 7. The proof rule Lie∗ is sound.167

Proof. A point on the variety is either regular or singular. For regular points168

(these form an open subset of the variety), since Lp(h)(x) = 0, the vector p(x)169

is sub-tangent to the variety at x (in fact, it is even tangent, so the condition170

we check is exactly that which is used in Lie). At singular points x ∈ VR(h)171

if h(x + λp(x)) = 0 holds for all λ then dist(VR(h),x + λp(x)) = 0 for all172

λ, from which it follows that lim infλ→0+
dist(VR(h),x+λp(x))

λ
= 0 and thus p(x) is173

sub-tangential to VR(h) at x. Assuming solutions exist and are unique, the variety174

VR(h) is positively invariant under the vector field p by Nagumo’s theorem.175

The case p(x) = 0 for all x in the singular locus is a special case of the proof176

rule Lie∗. Therefore, the soundness of Lie◦ is an immediate corollary of Prop. 7.177

Corollary 8. The proof rule Lie◦ is sound.178

Remark 9. It is worth remarking that the proof rules presented in this section,179

as well as Lie and FI, also work for non-polynomial vector fields and invariant180

candidates which themselves are not polynomial but sufficiently smooth. However,181

in such cases the resulting arithmetic may no longer be decidable [27].182

5. Proof rules for semi-algebraic sets183

In this section we will discuss three different methods for proving positive184

invariance of semi-algebraic sets, that is sets described by boolean combinations185

of polynomial equalities and inequalities.186
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5.1. Differential Invariants187

Differential induction with differential invariants (henceforth DI) was intro-188

duced in [22, Theorem 1].189

Theorem 10 (Differential Invariants (DI)). Given a polynomial system ẋ = p and190

a quantifier-free formula of real arithmetic S in the state variables (describing191

some semi-algebraic set), the following rule of inference is sound:192

(DI)
D(S)pẋ

S → [ẋ = p] S
.

In DI, S is a quantifier-free first-order formula in the theory of real arithmetic193

and D is the derivation operator [23, Definition 3.2], which is defined as follows:194

D(r) = 0 for numbers,
D(x) = ẋ for variables,

D(a+ b) = D(a) +D(b),

D(a · b) = D(a) · b+ a ·D(b),

D
(a
b

)
=
D(a) · b− a ·D(b)

b2
,

D(S1 ∧ S2) ≡ D(S1) ∧D(S2),

D(S1 ∨ S2) ≡ D(S1) ∧D(S2), (∧ here is important for soundness)
D(a ≤ b) ≡ D(a) ≤ D(b), accordingly for ≥, >,< .

(6)

The formula D(S)pẋ is obtained by replacing each ẋi in D(S) with the corre-195

sponding right hand side in the system of differential equations, i.e. by pi(x).196

Remark 11. Note that if S has the form h ≤ 0 for a polynomial h, then the197

requirements in the premise of DI are exactly the conditions that a barrier certifi-198

cate [25] has to satisfy. Thus, for this case, differential invariants include barrier199

certificates as a special case [22]. Barrier certificates are, however, also accom-200

panied with interesting techniques for generating such invariant regions.201

Remark 12. When S ≡ h = 0, the premise of DI is equivalent to the premise202

of FI. Thus, DI lifts FI to formulas following the arithmetic of the D operator in203

Eq. (6).204

In practice, although differential invariants allow one to work with sets that205

are expressed using formulas with boolean operators, the conditions are very con-206

servative (because they are required to hold everywhere in the state space, rather207
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than only on the boundary of the set defined by S) and may fail to hold even for208

seemingly simple positively invariant sets. That is why differential invariants are209

used in conjunction with differential cuts [22, 24], a process of successively aug-210

menting the system dynamics with provable invariants, which we do not consider211

here.212

5.2. Non-Smooth Strict Barrier Certificate213

Another criterion, which we term non-smooth strict barrier certificate, may be214

seen as a generalization of the strict barrier certificates criterion [25, 26] (limited215

to closed sets of the form h ≤ 0) to generic closed semi-algebraic sets. Notice216

that our generalization only concerns the sufficient conditions for checking the217

invariance of supplied candidates. In particular, we do not extend nor adapt the218

computation techniques (convex optimization) underlying the barrier certificates219

generation to the new criterion we present in the sequel.220

Given a closed semi-algebraic set S ≡
∨k
i=1

∧m(i)
j=1 hij ≤ 0 with polynomials221

hij ∈ R[x1, . . . , xn], we can equivalently rewrite S by a sub-level set of a contin-222

uous function, namely223

S ≡
k∨
i=1

m(i)∧
j=1

hij ≤ 0 ≡ min
i=1,...,k

max
j=1,...,m(i)

hij ≤ 0 .

Before stating the proof rule, we first define the Lie derivation for minmax224

functions as follows. The set Lp(max(h1, h2, . . . , hm)) < 0 is defined inductively225

by Lp(h1) < 0 if m = 1, and for m ≥ 2 by226

(h1 > max(h2, . . . , hm)→ Lp(h1) < 0)
∧ (h1 < max(h2, . . . , hm)→ Lp(max(h2, . . . , hm)) < 0)
∧ (h1 = max(h2, . . . , hm)→ Lp(h1) < 0 ∧ Lp(max(h2, . . . , hm)) < 0)

(7)
For instance, for m = 2, one gets:227

Lp(max(h1, h2)) < 0
def
=

(h1 > h2 → Lp(h1) < 0)
∧ (h1 < h2 → Lp(h2) < 0)
∧ (h1 = h2 → Lp(h1) < 0 ∧ Lp(h2) < 0)

We similarly define the set Lp(min(g1, . . . , gm)) < 0 by Lp(g1) < 0 if m = 1,228

and for m ≥ 2,229

(g1 < min(g2, . . . , gm)→ Lp(g1) < 0)
∧ (g1 > min(g2, . . . , gm)→ Lp(min(g2, . . . , gm)) < 0)
∧ (g1 = min(g2, . . . , gm)→ Lp(g1) < 0 ∨ Lp(min(g2, . . . , gm)) < 0)

. (8)
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where gi is of the form max(hi,1, . . . , hi,m). For instance,

Lp(min(max(h1, h2), h3)) < 0 ≡
(max(h1, h2) < h3 → Lp(max(h1, h2)) < 0)

∧ (max(h1, h2) > h3 → Lp(h3) < 0)
∧ (max(h1, h2) = h3 → Lp(max(h1, h2)) < 0 ∨ Lp(h3) < 0)

(9)

We are now ready to state the non-smooth strict barrier certificate proof rule.230

Proposition 13 (Non-smooth strict barrier certificates (NSSBC)). Given a con-231

tinuous system ẋ = p and a closed semi-algebraic set S ≡
∨k
i=1

∧m(i)
j=1 hij ≤ 0,232

where hij ∈ R[x1, . . . , xn], then, the following proof rule is sound:233

(NSSBC)

(
min
i=1,...,k

max
j=1,...,m(i)

hij = 0

)
→ Lp

(
min
i=1,...,k

max
j=1,...,m(i)

hij

)
< 0(∨k

i=1

∧m(i)
j=1 hij ≤ 0

)
→ [ẋ = p]

(∨k
i=1

∧m(i)
j=1 hij ≤ 0

) .

Proof. Consider an arbitrary point x0 ∈ Rn such that234

min
i=1,...,k

max
j=1,...,m(i)

hij

∣∣∣∣
x0

= 0,

then it is necessarily the case that for those active max arguments with indices i∗235

in I∗ ⊆ {1, . . . , k} such that236

max
j=1,...,m(i∗)

hi∗j

∣∣∣∣
x0

= 0

for all i∗ ∈ I∗, the condition237

Lp

(
max

j=1,...,m(i∗)
hi∗j

)∣∣∣∣
x0

< 0

needs to hold for at least some i∗ ∈ I∗ (otherwise the premise of the proof rule is238

not satisfied). Without loss of generality, assume that at x0 there is one such i∗.239

The condition guarantees that for all polynomial arguments of the max function,240

their Lie derivative is strictly negative at x0. Since Lie derivatives of polynomials241

under polynomial vector fields are also polynomial functions (and thus continu-242

ous), there exists an open neighbourhood around x0 inside which Lp(hi∗j) < 0243
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is true for all j ∈ {1, . . . ,m(i∗)}. Thus, if the system is initialized at x0, it is244

guaranteed to enter the region where245

max
j=1,...,m(i∗)

hi∗j < 0

and remain there for some non-empty time interval (0, ε), where ε > 0, by follow-246

ing the solution ϕt(·), which implies that247

min
i=1,...,k

max
j=1,...,m(i)

hij(ϕt(x0)) ≤ 0

for all t ∈ [0, ε
2
]. The closed set S is thus locally positively invariant and therefore248

positively invariant.249

5.3. Nagumo-like Conditions for Closed Semi-algebraic Sets250

Nagumo’s theorem gives a necessary and sufficient condition for positive in-251

variance of arbitrary closed sets (cf. Theorem 3); however, one needs to be careful252

when applying this result to sets defined by formulas with logical connectives. It253

is often tempting to apply the sub-tangency condition element-wise to sets defined254

by atomic formulas, but in certain degenerate cases this leads to incorrect con-255

clusions. To appreciate this problem, we first require some basic facts about the256

closure properties of the contingent cone (i.e. the set of all sub-tangent vectors to257

a set at a given point).258

Proposition 14. Let S1, S2 ⊆ Rn, then for all x ∈ S we have

Kx(S1) ∪Kx(S2) ⊆ Kx(S1 ∪ S2).

Proof. Since dist(S, ·) ≥ 0 and S1 ⊆ S1 ∪ S2, we have

0 ≤ inf
x∈S1∪S2

‖x− x0‖ ≤ inf
x∈S1

‖x− x0‖ for any x0, and

0 ≤ dist(S1 ∪ S2,x0) ≤ dist(S1,x0) by definition.

Substituting x0 + tv for x0 and dividing by t > 0 we get

0 ≤ dist(S1 ∪ S2,x0 + tv)

t
≤ dist(S1,x0 + tv)

t
and by assumption

0 ≤ lim inf
t→0+

dist(S1 ∪ S2,x0 + tv)

t
≤ lim inf

t→0+

dist(S1,x0 + tv)

t
= 0.

12



from which it follows that if v is sub-tangential to S1 at x0, then it is also259

sub-tangential to S1 ∪ S2. Thus, Kx(S1) ⊆ Kx(S1 ∪ S2) for all x ∈ S1; by the260

same argument one shows Kx(S2) ⊆ Kx(S1 ∪ S2) for all x ∈ S2, from which261

one concludes that the inclusion Kx(S1) ∪Kx(S2) ⊆ Kx(S1 ∪ S2) holds for all262

x ∈ S1 ∪ S2.263

Proposition 15. Let S1, S2 ⊆ Rn, then in general

Kx(S1) ∩Kx(S2) * Kx(S1 ∩ S2).

Proof. Consider S1 ≡ {x | x2 + x21 = 0} and S2 ≡ {x | x2 − x21 = 0}. The two264

sets intersect at 0 ∈ R2. At the origin, the intersection of the contingent cones265

is given by the real line, i.e. K0(S1) ∩K0(S2) = {x | x2 = 0}, whereas the266

contingent cone to the intersection of the two sets is given by the zero vector,267

K0(S1 ∩ S2) = {0}. See Figure 2 for an illustration and [33] for an overview this268

problem.269

x1

x 2

(a) x2 + x21 = 0 ∧ x2 − x21 = 0

x1

x 2

(b) ẋ1 = 1, ẋ2 = 0

Figure 2: Closure properties of the contingent cone at an intersection of two closed
sets. The intersection of the contingent cones to the two sets is shown in red. The
contingent cone to the intersection itself is {0}.

In general, given a closed set S which is presented as a finite union of inter-270

sections of closed sets Sij , i.e.271

k⋃
i=1

m(i)⋂
j=1

Sij,
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one would like to determine if p(x) ∈ Kx(S) by only checking p(x) ∈ Kx(Sij).
If one has

k⋃
i=1

m(i)⋂
j=1

Kx(Sij) ⊆ Kx(
k⋃
i=1

m(i)⋂
j=1

Sij). (10)

for all x on the boundary of S, then Nagumo’s criterion for vector field member-
ship in the contingent cone for the whole set can be applied component-wise, i.e.
the condition becomes

∀x ∈ bdr

 k⋃
i=1

m(i)⋂
j=1

Sij

 . p(x) ∈
k⋃
i=1

m(i)⋂
j=1

Kx(Sij).

It is possible to formulate inference rules based on Nagumo’s theorem which272

allow one to prove positive invariance of a large class of closed semi-algebraic273

sets. This has previously been investigated in [29], where a number of inference274

rules are presented for checking positive invariance of closed sets of the form275

h ≥ 0. For instance, it is shown that the following is a sound inference (similar to276

Lie):277

h = 0→ Lp(h) ≥ 0 ∧∇h 6= 0

h ≥ 0→ [ẋ = p] h ≥ 0
,

along with other rules with more general premises, all of which seek to check278

membership of p(x) in the contingent cone Kx(h ≥ 0). The lifting of the con-279

ditions to formulas with boolean connectives (leading to a potential proof rule280

for closed semi-algebraic sets) described in [29, p. 393] essentially requires each281

Sij to be of the form hij ≥ 0 and assumes the soundness-critical property (10).282

Soundness issues may arise when this assumption fails to hold (as in Fig. 2). This283

deficiency can be fixed by e.g. requiring the matrix of partial derivatives of active284

components on the boundary to be full rank, i.e. rk(∇h1,∇h2, . . . ,∇hk) = k285

whenever the polynomials h1, h2, . . . , hk evaluate to 0 on the boundary (this need286

only apply to conjunctive components). A number of other possible sufficient con-287

ditions for removing this source of unsoundness has been studied in non-smooth288

analysis [33] (see also practical sets in [2]). However, in practice, even ensuring289

the full-rank property for a matrix with polynomial entries is computationally ex-290

pensive. Furthermore, even with conditions for soundness in place, the result may291

not be applied to reason about positive invariance of semi-algebraic sets that are292

neither closed nor open.293
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5.4. Liu, Zhan & Zhao Decision Procedure294

In [16], it was shown that checking whether a given semi-algebraic set is pos-295

itively invariant under the flow of a polynomial vector field is decidable. The296

conditions one is required to check are phrased in terms of set inclusion of semi-297

algebraic sets, which can be determined using a decision procedure for real arith-298

metic. The result builds on ideas described earlier in [29] and crucially depends299

on the property of solutions to differential equations with analytic right-hand sides300

being themselves analytic. In the remainder of this section, we rephrase and pro-301

vide a detailed illustration of the main components of the result presented in [16].302

Theorem 16. Let h : Rn → R be an analytic function and ẋ = p be an ana-303

lytic system of ODEs. If x0 ∈ Rn is such that h(x0) = 0, then one has three304

possibilities at x0:305

1. ∃ N > 0. L
(N)
p (h) < 0

∧N−1
i=1 L

(i)
p (h) = 0,306

2. ∃ N > 0. L
(N)
p (h) > 0

∧N−1
i=1 L

(i)
p (h) = 0,307

3. ∀ N > 0.
∧N
i=1 L

(i)
p (h) = 0.308

If x(0) = x0, then in case 1 one has h(x(t)) < 0 for all t ∈ (0, ε) for some ε > 0;309

case 2 is analogous, but with h(x(t)) > 0 for all t ∈ (0, ε). In case 3, one is310

guaranteed that h(x(t)) = 0 for all t ∈ (0, ε).311

Proof. Since both h and the solution to the analytic ODE are analytic functions,
the Taylor series expansion of h(ϕt(x0)) around t = 0 is given by

h(x0) +
∞∑
i=1

(
ti

i!
· d

ih

dti

∣∣∣∣
x0

)
=
∞∑
i=1

(
ti

i!
· L(i)

p (h)
∣∣
x0

)
and converges on some non-empty open interval of t containing zero. Thus, the312

most significant term to become sign-definite will determine the sign of the entire313

sum on some sufficiently small interval. See [16, Proof of Proposition 9]. See314

also [29, Proof of Theorem 7], which employed very much the same ideas as [16].315

316

The following theorem is a simple corollary to [16, Theorem 19].317

Theorem 17 (Liu, Zhan & Zhao [16]). Given a polynomial system ẋ = p(x),
and a semi-algebraic set S ⊆ Rn, define

Inp(S) ≡ {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). x(t) ∈ S},
In(−p)(S) ≡ {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). x(−t) ∈ S},
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where x(t) is the solution to the initial value problem (ẋ = p(x),x(0) = x0) at318

time t. The set S is positively invariant under the flow of the system if and only319

if the inclusions In(−p)(S) ⊆ S ⊆ Inp(S) hold, which implies soundness (and320

relative completeness) of the following rule of inference:321

(LZZ)

(
In(−p)(S)→ S

)
∧ (S → Inp(S))

S → [ẋ = p] S
.

322

To develop some intuition for the construction of Inp(S), let us first consider
the case where S is characterized by a single non-strict inequality h ≤ 0. When-
ever h is an analytic function, one may use Theorem 16 to give a characterization
of Inp(h ≤ 0) as the set of states in Rn that satisfy the following infinite set of
conditions (cf. [29, Theorem 7, Theorem 8]):

h < 0 ∨
(h = 0 ∧ Lp(h) < 0) ∨

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) < 0) ∨

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ L(3)

p (h) < 0) ∨
...

The decidability of checking the conditions in Proposition 17 (i.e. the premise
of LZZ) hinges on the ability to construct semi-algebraic sets Inp(S) whenever S
is semi-algebraic. In [16] the authors make the crucial observation that whenever
h is a polynomial and ẋ = p(x) is a system of polynomial ODEs, then the Lie
derivatives L(i)

p (h) up to any order i are also polynomials. Using the fact that the
ring of multivariate polynomials with coefficients in some Noetherian ring is also
Noetherian (by Hilbert’s basis theorem), the set Inp(h ≤ 0) can be characterized
by a finite disjunction [16]:

h < 0 ∨
(h = 0 ∧ Lp(h) < 0) ∨

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) < 0) ∨

...

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ · · · ∧ L(N−1)

p (h) < 0) ∨
(h = 0 ∧ Lp(h) = 0 ∧ L(2)

p (h) = 0 ∧ · · · ∧ L(N−1)
p (h) = 0 ∧ L(N)

p (h) ≤ 0).
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The ascending chain property of Noetherian rings guarantees that there is a finite
positive integer N such that for all N ′ > N we have the following ideal member-
ship:

L(N ′)
p (h) ∈ 〈h,Lp(h), . . . ,L

(N)
p (h)〉.

The integer N may be found using Gröbner bases to successively check for ideal323

membership of L
(N)
p (h) in the ideal generated by the Lie derivatives of orders324

lower than N for N = 1, 2, 3, . . . until the ideal saturates (as with DRI). Once N325

is found, if the formula326

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ · · · ∧ L(N−1)

p (h) = 0 ∧ L(N)
p (h) = 0)

holds, then for any N ′ ≥ N we have327

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ · · · ∧ L(N−1)

p (h) = 0 ∧ L(N)
p (h) = 0 ∧ · · ·

∧ L(N ′)
p (h) = 0),

which removes the need to consider disjuncts with Lie derivatives of orders higher328

than N , as all the (infinitely many) formulas329

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ · · · ∧ L(N−1)

p (h) = 0 ∧ L(N)
p (h) = 0 ∧ · · ·

∧ L(N ′)
p (h) < 0),

with N ′ > N are guaranteed to be false.330

Remark 18. The ascending chain property is crucial in making it possible to rea-331

son about sign conditions of infinitely many higher-order Lie derivatives by only332

considering a finite number of sign conditions. The same idea was independently333

pursued in [10] to give a necessary and sufficient criterion for invariance of real334

algebraic sets under the flow of polynomial ODEs (summarized in the proof rule335

DRI; discussed earlier).336

Thus, by computing N for a given polynomial h and a system ẋ = p(x),337

one may construct a semi-algebraic set Inp(h ≤ 0). In Fig. 3d we detail the338

computation forN = 3 and depict the different “pieces” involved to form Inp(h ≤339

0), which is, in this particular case, the same as h ≤ 0 as shown in Fig. 4b.340
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Likewise in the case of strict polynomial inequalities h < 0, the set Inp(h < 0)
is semi-algebraic and is characterized by the following formula:

h < 0 ∨
(h = 0 ∧ Lp(h) < 0) ∨

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) < 0) ∨

...

(h = 0 ∧ Lp(h) = 0 ∧ L(2)
p (h) = 0 ∧ · · · ∧ L(N−1)

p (h) < 0) ∨
(h = 0 ∧ Lp(h) = 0 ∧ L(2)

p (h) = 0 ∧ · · · ∧ L(N−1)
p (h) = 0 ∧ L(N)

p (h) < 0).
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x1

x 2

(a) L(0)
p (h) < 0 (i.e. h < 0)

x1
x 2

(b) h = 0 ∧ Lp(h) < 0

x1

x 2

(c) h = Lp(h) = 0 ∧ L
(2)
p (h) < 0

x1

x 2

(d) h = Lp(h) = L
(2)
p (h) = 0 ∧ L

(3)
p (h) ≤ 0

Figure 3: Sign conditions on Lie derivatives in the construction of Inp(h ≤ 0)
with N = 3.
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x1

x 2

(a) h ≤ 0

x1
x 2

(b) Inp(h ≤ 0)

Figure 4: Constructing Inp(h ≤ 0) using higher-order Lie derivatives.

In order to construct Inp(·) for semi-algebraic sets with boolean structure, an341

important distribution property, proved in [16, Theorem 20], is required. For342

convenience, the property is stated below.343

Theorem 19 ([16]). Given a polynomial system ẋ = p(x) and a semi-algebraic
set S ≡

∨k
i=1

∧m(i)
j=1 hij ∼ 0 where ∼∈ {<,≤}, we have

Inp(S) ≡
k∨
i=1

m(i)∧
j=1

Inp(hij ∼ 0).

344

Finally, In(−p)(S) is constructed in exactly the same way as Inp(S), except345

the Lie derivatives are computed with respect to the vector field induced by the346

system in which time is reversed, i.e. ẋ = −p(x). This is possible because347

d

dt
x(−t) = −p(x(−t)),

and the solution to ẋ = −p(x) is given by x(−t), where x(t) is the solution to348

ẋ = p(x). Once all the semi-algebraic sets in the premise of LZZ are constructed,349

the validity of the premise can be decided using a decision procedure for real350

arithmetic [30].351
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6. Hierarchy352

In this section, we compare the deductive power of the existing (Fig. 1) as353

well as the newly-introduced proof rules (Lie◦ and Lie∗ in Section 4, and NSSBC354

in Section 5.2) for checking the invariance of algebraic and semi-algebraic sets.355

This study should be complemented by another comparison that considers the in-356

teraction between the different proof rules in the context of a formal proof system357

in a similar vein to [24]. We leave this for future work.358

Given two proof rules R1 and R2 of the form359

(R1)
P1

(S1 : T1) −→ [ẋ = p](S1 : T1)
(R2)

P2

(S2 : T2) −→ [ẋ = p](S2 : T2)
(11)

where Pi refers to the premise of the proof ruleRi, and the conclusion has the form360

(S1 : T1) −→ [ẋ = p](S1 : T1), where Si : Ti denotes that the set Si is of type Ti361

(the typical types we are considering in this work are algebraic and semi-algebraic362

sets).363

Definition 20 (Partial order over proof rules). Let R1 and R2 be two proof rules364

of the form of Eq. (11). We say that R2 generalizes R1 and write R2 < R1 (or365

R1 4 R2), if the premise of R1 implies the premise of R2 (P1 → P2), and T1366

is a subtype of T2 (for instance, the type algebraic set is a subtype of the type367

semi-algebraic set).368

Intuitively, if the proof rule R1 proves that S1 : T1 is an invariant for the vector369

field p, then R2 can be also applied to discharge the invariance of S1. If R1 4 R2370

and R1 < R2, we say that R1 and R2 are equivalent, and denote this by R1 ∼ R2.371

Observe that two equivalent proof rules operate necessarily on equivalents type of372

sets so T1 and T2 are equivalent. In a similar vein, R1 64 R2 (or R2 6< R1) denotes373

that R1 is not generalized by R2. So in the absence of other rules, a proof rule that374

operates on algebraic sets cannot generalize a proof rule for semi-algebraic sets.375

Finally, we also write R1 ≺ R2 when R1 4 R2 and R1 6< R2. That is, the rule R2376

increases the deductive power of R1.377

It is easy to see that the order 4 is a partial order (with ∼ acting as equality):378

it is reflexive, R 4 R (the premise of R implies itself); it is anti-symmetric (by379

definition), and transitive: if R1 4 R2 and R2 4 R3, then the premise of R1380

implies the premise of R3 by transitivity of the implication, so R1 4 R3. Finally,381

if R1 64 R2 and R1 6< R2, we will write R1 ≺� R2 and say that the proof rules R1382

and R2 are incomparable. This means that for both R1 and R2 there are problems383
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that one rule can prove and the other cannot. Notice that a proof rule for invariance384

of a certain class of semi-algebraic sets does not automatically generalize a proof385

rule for invariance of algebraic sets, even though the subtype condition is satisfied.386

Such proof rules are likely to be incomparable.387

In what follows we use the partial order (4) to illustrate the lattice structure of388

the proof rules under consideration. We use 4 to compare the deductive power of389

the proof rules. On one hand, the proof rules for algebraic sets:390

{FI,C-c,P-c,Lie,Lie◦,Lie∗,DRI},

and, on the other hand, the proof rules for semi-algebraic sets:391

{NSSBC,Nagumo,DI,LZZ} .

For convenience, the propositions of this section are summarized in the compar-392

ison matrices in Fig. 6 and Fig. 8. For instance, Prop. 25 proves that FI ≺� Lie.393

Cells without numbers are proved by transitivity of the partial order. For instance,394

FI ≺ DRI can be proved using FI ≺ C-c (Prop. 21) and C-c ≺ P-c (Prop. 22)395

and P-c ≺ DRI (Prop. 24). The Hasse diagram (Fig. 5) gives the lattice structure396

where arrows represent strictly increasing deductive power; every missing edge in397

the graph represents ≺�, as shown in the comparison matrix.398

6.1. Proof Rules for Algebraic Sets399

We begin by comparing Darboux-based proof rules, i.e. {FI,C-c,P-c} and400

then proceed to the Lie-based proof rule family, i.e. {Lie,Lie◦,Lie∗}. Next, we401

demonstrate the deductive superiority of the necessary and sufficient conditions402

in the premise of the proof rule DRI. Finally, we show that Darboux-based proof403

rules and Lie-based proof rules form two distinct proof rule families; that is, any404

proof rule from one family is deductively incomparable to any proof rule from the405

other family.406

Proposition 21. FI ≺ C-c.407

Proof. The premise of the rule C-c requires the existence of some λ ∈ R, such408

that Lp(h) = λh. In particular, λ = 0 gives the premise of FI. Thus, FI 4 C-c.409

To see that FI 6< C-c, consider the one-dimensional vector field p = (x), we410

have Lp(x) = 1x, and hence C-c (λ = 1) concludes that x = 0 is an invariant.411

However, FI cannot prove the invariance of x = 0 because x is not a conserved412

quantity in the system.413
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LZZ

Nagumo

NSSBC DRI

Lie∗

Lie◦

Lie

P-c

DI

C-c

FI

(Algebraic Sets)

(Darboux)(Lie)

(Semi-algebraic Sets)

(Closed Semi-algebraic Sets)

Figure 5: Hasse diagram. An arrow R1 → R2 means R1 ≺ R2; absence of
connecting arrow(s) means (≺�).

Proposition 22. C-c ≺ P-c.414

Proof. The premise of the rule P-c requires the existence of some α ∈ R[x],415

such that Lp(h) = αh (equivalently, Lp(h) ∈ 〈h〉). In particular, the constant416

polynomial gives the premise of C-c. Thus, C-c 4 P-c. To prove that C-c 6< P-c,417

consider the two-dimensional vector field p = (xy, x), we have Lp(x) = xy (or418

equivalently Lp(x) ∈ 〈x〉 ⊂ R[x, y]) and hence conclude, using P-c, that x = 0 is419

an invariant. However, C-c fails to prove this invariant as the required cofactor is420

not a scalar.421

Proposition 23. Lie ≺ Lie◦ and Lie◦ ≺ Lie∗.422

Proof. We already established that Lie 4 Lie◦ (Prop. 8) and Lie◦ 4 Lie∗ (Prop. 7);423

we give two counterexamples to establish the strict inclusion. (I) Lie 64 Lie◦.424

Whenever the variety has a singularity, the proof rule Lie will fail. Lie◦ is tai-425

lored to prove invariance of equilibrium points in addition to regular points of the426

variety. For instance, for p = ((−1 + x1)x2, x2(1 + x2)), Lie fails to prove that427

h = (−1+x1)2+(1+x2)
2 = 0 is invariant as the gradient∇h vanishes at (1,−1)428
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FI C-c P-c Lie Lie◦ Lie∗ DRI

FI ∼ ≺
21

≺ ≺�
25

≺�
28

≺�
27

≺

C-c �
21

∼ ≺
22

≺�
29

≺�
30

≺�
30

≺

P-c � �
22

∼ ≺�
29

≺�
30

≺�
30

≺
24

Lie ≺�
25

≺�
29

≺�
29

∼ ≺
23

≺ ≺

Lie◦ ≺�
28

≺�
30

≺�
30

�
23

∼ ≺
23

≺

Lie∗ ≺�
27

≺�
30

≺�
30

� �
23

∼ ≺
24

DRI � � � � � � ∼

Figure 6: Comparison matrix for proof rules for algebraic sets (the numbers refer
to the respective propositions).

and h((1,−1)) = 0. However, at (1,−1) we also have p1 = p2 = 0, and hence429

the premise of Lie◦ is satisfied, and h = 0 is proved to be an invariant under the430

flow of p. (II) Lie◦ 64 Lie∗. In addition to equilibria, Lie∗ goes one step further431

and handles all singular points, x, where the vector x+λp is in the variety VR(h)432

for all λ ∈ R (that is h(x + λp) = 0, for all λ). For instance, consider the poly-433

nomial h = x1x2x3, its singular locus is given by the three axes x1 = x2 = 0,434

x1 = x3 = 0 and x2 = x3 = 0. For the vector field p = (x1, x2, x3), the equi-435

librium point is at the origin (0, 0, 0), which obviously does not contain the entire436

singular locus of h. Thus, Lie◦ fails but Lie∗ succeeds because h(x + λp) = 0437

when x is a point of one of the axes.438

Proposition 24. P-c ≺ DRI and Lie∗ ≺ DRI.439

Proof. DRI is both necessary and sufficient [10], so we know that P-c 4 DRI and440

Lie∗ 4 DRI. To prove the claim it is left to show that (I) P-c 6< DRI. Consider441

the following two-dimensional vector field: p = ((−1+x1)(1+x1), (−1+x2)(1+442

x2)). The candidate invariant (given by the roots of the Motzkin polynomial)443

h = 1 − 3x21x
2
2 + x41x

2
2 + x21x

4
2 = 0 cannot be proved using P-c, as Lp(h) 6∈ 〈h〉.444

However, the invariance property may be proved using DRI. For this, we need445

to consider the second-order Lie derivative of h and we prove that L(2)
p (h) ∈446

〈h,Lp(h)〉. Thus, the premise of DRI holds for N = 2. (II) Lie∗ 6< DRI.447

Consider the following three-dimensional vector field p = (−x2 + x1(1 − x21 −448
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x22), x1+x2(1−x21−x22), x3). We want to prove that h = (−1+x21+x22)2+x23 = 0449

is an invariant. In this case, the variety VR(h) is exactly equal to the singular locus450

of h which is the two-dimensional unit circle −1 + x21 + x22 = 0. However, at451

all points of this unit circle, the vector field p is equal to (−x2, x1, 0) 6= 0, which452

prevents us from using Lie∗ (because h((x1, x2, 0) + λ(−x2, x1, 0)) 6= 0 for some453

λ ∈ R). The rule DRI proves the invariance of h = 0 with N = 2.454

To appreciate the difference between FI and Lie, let us note that while the con-455

dition in the premise of FI may seem strong (i.e. too conservative), singularities456

in the invariant candidate do not present a problem for FI, whereas the premise457

of Lie rules out such candidates altogether (see Fig. 7). Indeed, the proof rule Lie458

cannot prove that 0 = 0 (the whole space is invariant), whereas this is the most459

trivial case for FI.460

x1

x 2

(a) Positive invariance of the variety
VR(x

2
1+x31−x22) provable using FI (but

not Lie since (0, 0) is a singular point).

x1

x 2

(b) Smooth invariant limit cycle
VR(x

2
1 + x22 − 1) provable using Lie

(but not FI since x21 + x22 − 1 is not an
invariant function).

Figure 7: Invariant functions and invariant equations.

Proposition 25 (FI and Lie are incomparable.). FI ≺� Lie.461

Proof. (I) FI 64 Lie. For the vector field p = (−2x2,−2x1 − 3x21), the equation462

x21 + x31 − x22 = 0 is provable with FI but not Lie, see Fig. 7 (left). (II) FI 64 Lie.463

For the vector field p = (x1−x31−x2−x1x22, x1+x2−x21x2−x32), the invariance464
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of the limiting cycle x21 + x22 − 1 = 0 is provable with Lie but not FI, see Fig. 7465

(right).466

We now prove that Lie-based proof rules {Lie,Lie◦,Lie∗}, and Darboux-based467

proof rules {FI,C-c,P-c} are two distinct families of proof rules; that is, any Lie-468

based proof is deductively incomparable to any Darboux-based proof rule. The469

following lemma follows from the transitivity of the partial order.470

Lemma 26. If R1 4 R2 and R3 ≺� R1, then R2 64 R3.471

Proof. Consider three proof rulesR1,R2 andR3. IfR2 4 R3, usingR1 4 R2, one472

gets by transitivity R1 4 R3, which contradicts the assumption R3 ≺� R1.473

Proposition 27. FI ≺� Lie∗.474

Proof. Since Lie 4 Lie◦ (Prop. 8) and Lie◦ 4 Lie∗ (Prop. 7), Lie 4 Lie∗. By475

Lem. 26, from Lie 4 Lie∗ and FI ≺� Lie (Prop. 25), we obtain Lie∗ 64 FI. The476

following example proves that FI 64 Lie∗: Consider the three-dimensional vector477

field p = (x2,−x1, 0). The invariance of the equation x23+(−1+x21+x22+x23)2 = 0478

cannot be established using Lie∗ (the singular locus is a circle in R3), but is easily479

provable using FI as Lp(h) vanishes.480

Proposition 28. FI ≺� Lie◦.481

Proof. By Lem. 26, from Lie 4 Lie◦ (Prop. 8) and FI ≺� Lie (Prop. 25), we482

get Lie◦ 64 FI. On the other hand, if FI 4 Lie◦ then, by transitivity FI 4 Lie∗483

(since Lie◦ 4 Lie∗ by Prop. 7), which contradicts FI ≺� Lie∗ (Prop. 27). Thus,484

FI 64 Lie◦, and the proposition follows.485

Similarly, by substituting FI by Lie, Lie∗ by P-c, and Lie◦ by C-c in Prop. 27486

and Prop. 28 as well as their respective proofs, we show that:487

Proposition 29. Lie ≺� P-c and Lie ≺� C-c.488

Proof. To complete the proof, we still need an example showing that Lie 64 P-c.489

Consider the vector field p = (3(−4+x2), 3+xy−y2), the proof rule Lie fails to490

prove that the equation h = −3+x2+2xy+6y2+2xy3+y4 = 0 is invariant as the491

singular locus of h contains (−2, 1) and (2,−1). However, Lp(h) = (6x − 4y)h492

and therefore P-c proves that h = 0 is an invariant equation.493

The remaining cases follow from the results established above.494
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NSSBC Nagumo DI LZZ

NSSBC ∼ ≺
32

≺�
34

≺

Nagumo �
32

∼ ≺�
35

≺
33

DI ≺�
34

≺�
35

∼ ≺
33

LZZ � �
33

�
33

∼

Figure 8: Comparison matrix for proof rules for semi-algebraic sets (the numbers
refer to the propositions).

Proposition 30. For d ∈ {C-c,P-c}, ` ∈ {Lie◦,Lie∗}, d ≺� `.495

Proof. Since FI ≺ d, if d 4 `, then FI 4 `. However, FI ≺� ` (Prop. 27 and496

Prop. 28). Thus d 64 `. Similarly, since l � Lie, if d < `, then d < Lie which497

contradicts d ≺� Lie (Prop. 29). Hence d 6< ` and the proposition follows.498

Remark 31. Provided that the invariant candidate has no singular points, Lie’s499

criterion is known to be both necessary and sufficient to prove invariance prop-500

erties of level sets [20, Theorem 2.8]. Also, FI characterizes invariant functions501

[23] but not all invariant equations. On the other hand, for algebraic differ-502

ential equations, the differential radical criterion in DRI fully characterizes all503

invariant algebraic sets [10]. Thus, as established in Prop. 24, DRI increases the504

deductive power of both Darboux-based rules {FI,C-c,P-c} and Lie-based rules505

{Lie,Lie◦,Lie∗}, which form different families.506

6.2. Proof Rules for Semi-Algebraic Sets507

In this section, we compare the deductive power of the proof rules508

{NSSBC,Nagumo,DI,LZZ},

as well as their relationships to the proof rules for checking the invariance of509

algebraic sets.510

Proposition 32. NSSBC ≺ Nagumo.511

Proof. The Nagumo theorem characterizes closed positively invariant sets under512

the flow of locally Lipschitz ODEs. In particular, this covers closed semi-algebraic513
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sets and polynomial ODE. Hence NSSBC 4 Nagumo. To see why the inequal-514

ity is strict, consider any vector field with an invariant algebraic set (recall that515

algebraic sets are special closed semi-algebraic sets with empty interior). The516

proof rule NSSBC cannot work for such invariant sets precisely because it re-517

quires Lp(h) < 0 whenever h = 0. In fact, h = 0 → Lp(h) = 0 is a necessary518

condition for any invariant algebraic set.519

Proposition 33. Nagumo ≺ LZZ and DI ≺ LZZ.520

Proof. For semi-algebraic sets, the proof rule LZZ characterizes (arbitrary) invari-521

ant semi-algebraic sets for polynomial ODE. The Nagumo theorem only charac-522

terizes closed semi-algebraic sets. Hence the strict inequality. Similarly, DI gives523

only a sufficient condition and is therefore strictly less powerful than LZZ.524

Proposition 34. NSSBC ≺� DI.525

Proof. DI 6< NSSBC. Consider the system

p(x) =
(
−
(
x31 + x22x1 − x1 − x2

)
,−
(
x32 + x21x2 − x2 + x1

))
and let S1 ≡

(
x1 − 1

3

)
2 + x22 − 2 ≤ 0 ∧

(
x1 +

1
3

)
2 + x22 − 2 ≤ 0, which is a526

positively invariant set under the flow of the system (see Fig. 9a). The invariance527

property cannot be proved using the rule DI, but is easily proved using NSSBC528

(and LZZ).529

NSSBC 6< DI. Consider the system p(x) = (x22, 2) and let S2 ≡ x2 ≥ 0 ∧530

x1 ≥ 0. Positive invariance of S2 is proved easily using either DI (and LZZ), but531

cannot be proved using NSSBC. Intuitively, this can be seen because at the origin532

the vector p(0) does not point strictly into the interior of S2 ≡ max(−x2,−x1) ≤533

0, since Lp(−x1) = −x22|0 = 0 (see Fig. 9b).534

28



x1

x 2

(a) S1 ≡
(
x1 − 1

3

)
2 + x22 − 2 ≤ 0 ∧(

x1 +
1
3

)
2 + x22 − 2 ≤ 0

x1
x 2

(b) S2 ≡ x2 ≥ 0 ∧ x1 ≥ 0

Figure 9: Positive invariance of the semi-algebraic set S1 (left) provable using NSSBC (but not
DI) and a positive invariant S2 (right) provable using DI (but not NSSBC).

Proposition 35. Nagumo ≺� DI.535

Proof. By Prop. 34 and Lem. 26, Nagumo 64 DI. In addition, the proof rule DI536

cannot be generalized by Nagumo since it can be applied to sets that are not537

necessarily closed or open, which is not the case with Nagumo.538

In Fig. 5, one can see that the proof rules for algebraic sets are incomparable539

with NSSBC. This is precisely because invariant algebraic sets are ruled out all540

together by the premise of NSSBC which requires the vector field to point inward541

on the boundaries. Furthermore, because only algebraic sets are allowed in the542

conclusion of those proof rules, they cannot generalize NSSBC nor DI which can543

be apply more generally. Thus:544

Proposition 36. Let ` ∈ {FI,C-c,P-c,Lie,Lie◦,Lie∗,DRI}, then ` ≺� NSSBC545

and ` 6< DI.546

The proof rule DI cannot generalize C-c, P-c, Lie ,Lie◦, Lie∗, and DRI. For547

the same reason FI cannot generalize those proof rules (cf. Section 6.1). Thus:548

Proposition 37. Let ` ∈ {C-c,P-c,Lie,Lie◦,Lie∗,DRI}, then ` ≺� DI.549
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DRI

Lie∗

Lie◦

Lie

P-c

C-c

FI ≺� SFFI

≺� SFC-c

∼ SFP-c

∼ SFDRI

SFLie�

SFLie◦�

SFLie∗�

(a) Algebraic Sets

LZZ

Nagumo

NSSBC

DI

SFEQLZZ∼

≺� SFEQDISFEQNagumo∼

SFEQNSSBC�

(b) Semi-algebraic Sets

Figure 10: Square-free Reduction (Summary)

The generalization FI ≺ DI is a straightforward consequence of DI: in fact,550

by definition, the proof rule DI lifts, in a conservative way, the simplest condition551

for a differentiable function to be positive or negative—namely by checking if its552

derivative is positive or negative respectively—to a finite boolean formula of such553

functions. Said differently, the premise of FI is identical to the premise of DI554

when used for an atomic formula of the form h = 0.555

Remark 38. The premises of the proof rules for algebraic sets could be used to556

work with a larger class of invariant sets, namely those of the form h ≥ 0 in557

addition to algebraic sets. For instance, if Lp(h) ∈ 〈h〉, then necessarily h ≥558

0 is an invariant of the system. In fact, the invariance of h = 0 implies the559

invariance of h ./ 0 for ./∈ {≤, <,≥, >}. Such extra proof rules do not bring any560

additional insight to the realm of proof rules depicted in Fig. 5 and are therefore561

not represented.562

7. Square-free Reduction563

In this section we assess the utility of performing square-free reduction of in-564

variant candidates as a means of (i) increasing the deductive power of certain proof565

rules to be identified and (ii) simplifying problems passed to decision procedures566

for real arithmetic. Our results are summarized in Fig. 10 for convenience.567

7.1. Square-free Reduction with Lie-based Proof Rules568

While Lie uses a powerful criterion that captures a large class of practically569

relevant invariant sets, it will fail for some seemingly simple invariant candidates.570

For instance, the condition in the premise of Lie will not hold when the goal is571
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to prove that h = x2 − 6x + 9 = 0 is invariant, no matter what vector field one572

considers. The reason for this is simple: x2− 6x+9 factorizes into (x− 3)2. The573

problem here lies in the polynomial h itself, rather than the real variety VR(h). In574

fact, VR(h) is exactly the singular locus of h and the proof rule Lie fails because575

all points inside VR(h) are singular points. More generally, the chain rule implies576

∇hk · p = khk−1∇h · p, which has the consequence that any polynomial h which577

is not square-free will have vanishing gradient at the real roots of factors with578

multiplicity greater than 1.579

One can eliminate such annoying instances by reducing h to square-free form,580

which is a basic pre-processing step used in computer algebra systems. The581

square-free reduction of a polynomial h may be computed as follows:582

SF(h) =
h

gcd
(
h, ∂h

∂x1
, . . . , ∂h

∂xn

) . (12)

Intuitively, in performing square-free reduction we hope to shrink the singular583

locus of the original polynomial. If SL(SF(h)) is the empty set (which is the case584

for h = x2 − 6x + 9 in the example given above), the proof rule Lie applies to585

SF(h) but not to h. In general, SF(h) may satisfy the assumptions of the proof586

rules Lie◦ or Lie∗, where h fails to do so. It is always sound to conclude that h = 0587

is invariant from the knowledge that SF(h) = 0 is invariant, since real varieties588

remain unaltered under square-free reduction of their defining polynomials [5],589

i.e. VR(h) ≡ VR(SF(h)). Thus, replacing h with SF(h) in the premise of Lie,590

Lie◦ and Lie∗ does not compromise soundness (it us a use of the generalization591

proof rule [21]) and enlarges the class of polynomials that these proof rules can592

work with.593

Proposition 39. For all ` ∈ {Lie,Lie◦,Lie∗}, ` ≺ SF `.594

This result is unsurprising when one understands that Lie-based proof rules595

use geometric concepts to prove invariance properties of sets. In fact, the square-596

free reduction removes some purely algebraic oddities that prevent the geometric597

condition from holding true when checked syntactically by a machine.598

In addition to increasing the deductive power, the square-free reduction re-599

duces the total degree of the polynomial in the invariant candidate and hence600

serves to reduce the complexity of deciding the conditions in the premise (cf.601

discussion in Section 8). In our implementation, we adopt the convention that in-602

variant candidates supplied to Lie and its generalizations are square-free reduced603

in a pre-processing step.604
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7.2. Square-free Reduction with Darboux-based proof rules605

Unlike Lie-based proof rules, it is perhaps surprising that using square-free606

reduction as a pre-processing step for the proof rules FI and C-c, denoted SFFI607

and SFC-c respectively, does not, in general, increase the deductive power and608

may even lead to properties that are no longer provable.609

Proposition 40. FI ≺� SFFI.610

Proof. (I) FI 6≺ SFFI. The polynomial h = x2y is an invariant function for611

the vector field p = (∂h
∂y
,−∂h

∂x
) = (x2,−2xy), thus FI proves the invariance of612

h = 0. However, SF(h) is not an invariant function for the same vector field, since613

Lp(SF(h)) = Lp(xy) = −x2y 6= 0, thus SFFI fails to prove the invariance of614

h = 0. (II) SFFI 6≺ FI. Similarly, the polynomial h = xy is an invariant function615

for the vector field p = (∂h
∂y
,−∂h

∂x
) = (x,−y), thus SFFI proves the invariance616

of x2y = 0, since SF(x2y) = h. However, FI fails to prove the invariance of617

x2y = 0, because Lp(x
2y) = x2y 6= 0.618

Prop. 40 may at first seem counter-intuitive. However, the criterion in the619

premise of FI is different as it proves that the candidate h is an invariant func-620

tion. In performing square-free reduction on h, one in general obtains a different621

function, SF(h), which need not be conserved in the system if h is conserved or,622

conversely, may be conserved even if h is not.623

The same observation holds for C-c as the SF reduction does not preserve the624

constant rate exponential decrease (or increase).625

Proposition 41. C-c ≺� SFC-c.626

Proof. (I) C-c 6≺ SFC-c. The proof rule C-c proves the invariance of h = x2y =627

0 for the vector field p = (x2, y(1 − 2x)) as Lp(h) = 1h. However, C-c cannot628

prove SF(h) = 0, since Lp(SF(h)) = Lp(xy) = (1 − x) SF(h). (II) SFC-c 6≺629

C-c. For the same h, C-c proves the invariance of SF(h) = 0 for the vector field630

p = (x2, y(1−x)) as Lp(SF(h)) = Lp(xy) = 1 SF(h). However, without the SF631

reduction C-c alone fails to prove the invariance of h = 0 for the considered p, as632

Lp(h) = (x+ 1)h.633

After Prop. 40 and 41, one expects P-c to be incomparable with its square-634

free counterpart. Surprisingly, the proof rules P-c and SFP-c (which applies P-c635

after the square-free reduction) are in fact equivalent. This follows from the fact636

that a polynomial is Darboux for a vector field p if and only if all its factors are637
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also Darboux for the same vector field. Our findings are stated in Prop. 42 and its638

corollary Prop. 43.5639

Proposition 42. Let h = qm1
1 · · · qmr

r denote the decomposition of the polynomial640

h into irreducible (over the reals) factors, qi. Then, h is Darboux for p if and only641

if, for all i, qi is Darboux for p.642

Proof. If, for all i, the polynomial qi is Darboux for p, then qi divides Lp(qi), i.e.
Lp(qi)

qi
∈ R[x1, . . . , xn]. Therefore, using the chain rule,

Lp(h) = Lp(q
m1
1 · · · qmr

r ) (13)

=
r∑
i=1

(
miLp(qi)q

mi−1
i

∏
j 6=i

q
mj

j

)
(14)

=
r∑
i=1

miLp(qi)q
mi−1
i

h

qmi
i

(15)

= h
r∑
i=1

mi
Lp(qi)

qi
(16)

∈ 〈h〉, (17)

and h is also Darboux for p.643

If h is Darboux for p, then h divides Lp(h) and Lp(h)

h
is a polynomial. Recall644

that SF(h) = q1 · · · qr. Using Eq. (16), one gets645

Lp(h)

h
SF(h) =

r∑
i=1

mi
Lp(qi)

qi
SF(h) . (18)

For a fixed i, qi divides SF(h), it thus divides the left hand side of Eq. (18). More-646

over, qi divides SF(h)
qj

, for all j 6= i. It thus necessarily divides mi
SF(h)
qi

Lp(qi).647

If qi divides SF(h)
qi

, then there exists j 6= i such that qi divides qj , which contra-648

dicts the fact that all factors q1, . . . , qr are irreducible. Thus, qi divides Lp(qi) and649

Lp(qi) ∈ 〈qi〉.650

Proposition 43. P-c ∼ SFP-c.651

5See [8, Proposition 8.4] for a similar proposition over the complex numbers.
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Proof. The proof rule P-c proves the invariance of h = 0 for p if and only if652

the polynomial h is Darboux. However, by Prop. 42, h is Darboux if and only if653

SF(h) is also Darboux. Therefore, SFP-c could be used equivalently to prove the654

invariance of h = 0.655

Remark 44. The condition Lp(h) ∈ 〈SF(h)〉—which is weaker than Lp(h) ∈656

〈h〉—is not sufficient to prove the invariance of h = 0. It is therefore an unsound657

proof rule. Consider the polynomial h = (−1 + x2)2 and the 1-dimensional658

vector field ẋ = x. Although Lp(h) = 4(−1 + x2)x2 ∈ 〈−1 + x2〉 = 〈SF(h)〉,659

the equation h = 0 is not invariant, however, because x(t) = ±et. Notice that660

the proof rule P-c (with or without the square-free reduction) is unable to prove661

or disprove the invariance of h = 0.662

7.3. Square-free Reduction On Differential Radical Invariants (DRI)663

Square-free reduction cannot increase the deductive power of the proof rule664

DRI because its premise is necessary and sufficient to prove invariance of real665

algebraic sets, which is unaffected by applying SF reduction. However, the com-666

putational impact of using square-free reduction with DRI remains an interesting667

question. Empirically, we observed a better performance of DRI when the SF668

reduction is applied first. In addition to lowering the degrees of the involved poly-669

nomials (as it did for Lie-based proof rules), we observed that the order NSF for670

SF(h) is always lower than the orderN for h. We, therefore, conjectureNSF ≤ N .671

However, we identified an example (cf. Ex. 45 below) for which square-free re-672

duction resulted in a significant (×100) computational overhead due to the ideal673

membership checking (which we perform using Gröbner bases with reverse lex-674

icographic monomial ordering). In our implementation of DRI, called DRIopt in675

the sequel, we use the square-free reduction only as a pre-processing step for the676

quantifier elimination problems in the premise of DRI.677
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Example 45. Consider the following vector field p:

ẋ1 = −24 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

)
x4x5

(
x27 + x2 − 12341

)
16

(
x4x

2
5 − 12x6x8

)
11,

ẋ2 = 144 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

) (
x27 + x2 − 12341

)
16x8

(
x4x

2
5 − 12x6x8

)
11,

ẋ3 = −32 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

)
x7

(
x27 + x2 − 12341

)
15

(
x4x

2
5 − 12x6x8

)
12,

ẋ4 = 144 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

)
x6

(
x27 + x2 − 12341

)
16

(
x4x

2
5 − 12x6x8

)
11,

ẋ5 = (x1 + x3)
(
2x1x

4
2 + 4x31x

2
2 − 6x1x

2
3x

2
2

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
16

+
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
16,

ẋ6 = (x1 + x3)
(
2x2x

4
1 + 4x32x

2
1 − 6x2x

2
3x

2
1

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
16

+ 16 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
15,

ẋ7 = (x1 + x3)
(
6x53 − 6x21x

2
2x3

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
16

+
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

) (
x4x

2
5 − 12x6x8

)
12

(
x27 + x2 − 12341

)
16,

ẋ8 = 12 (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

)
x25

(
x27 + x2 − 12341

)
16

(
x4x

2
5 − 12x6x8

)
11,

and let

h1 =
(
x4x

2
5 − 12x6x8

)
12

h = (x1 + x3)
(
x63 − 3x21x

2
2x

2
3 + x21x

4
2 + x41x

2
2

) (
x27 + x2 − 12341

)
16h1.

Attempting to prove that h = 0 is invariant under the flow of this system using678

DRI we observe running time of under 2 seconds. Reducing h to be square-free679

results in DRI running for over 8 minutes before it is able to prove the result. In680

this case, square-free reduction introduces a performance penalty when checking681

for polynomial ideal membership (which is performed using Gröbner bases with682

reverse lexicographic monomial ordering). We see that one needs to be careful683

when using square-free reduction with DRI because even though it is reason-684

able to expect better performance due to lower degrees in square-free reduced685

polynomials, performing this step may make the Gröbner basis computation more686

difficult for some problems.687

Remark 46. Notice that Prop. 42 does not have an analogue for DRI. In other688

words, if a polynomial equation h = 0 is invariant for p, its irreducible factors689

need not define invariant equations themselves. Geometrically, this means that if690

a variety is invariant under the flow of p, its irreducible components need not be691

invariants under the flow of p. For instance, consider the irreducible polynomials692

q1 = y − 1 and q2 = x2 + (y − 1)2. The equation q1q2 = 0 which is equivalent693

to y = 1, is invariant for p = (1, 0), since the premise of the proof rule DRI694

holds true for N = 3. However, the equation q2 = 0, which is equivalent to695

x = 0 ∧ y = 1, is not an invariant equation for p. The reason for the invariance696

of q1q2 = 0, which is equivalent to q1 = 0 ∨ q2 = 0, stems from q1 not from q2.697
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7.4. Order parity decomposition698

Similar to square-free reduction for invariant polynomial equations, one may699

sometimes remove roots of multiplicities greater than 1 from polynomial inequal-700

ities p ≤ 0, thereby simplifying their description and removing singularities on701

their boundary. To do this, we will require some definitions, due to Dolzmann and702

Sturm (see [7]).703

Definition 47 (Square-free decomposition [7]). Given a polynomial h ∈ Z[x1, . . . , xn],
the square-free decomposition is given by

(h1, . . . , hn) s.t.
n∏
i=1

hii = h,

where all hi are square-free and relatively prime, i.e. gcd(hi, hj) = 1.704

Note that while superficially similar to square-free reduction, the square-free705

decomposition is quite different. To see this, note that the exponent in the product706

matches the index. Thus, the order in a square-free decomposition encodes the707

exponent to which the factor hi is raised in the original polynomial h, i.e. the fac-708

tors raised to odd powers will have odd index in the decomposition; respectively709

for even exponents.710

Definition 48 (Parity decomposition [7]). Given a polynomial h ∈ Z[x1, . . . , xn]
with square-free decomposition (h1, . . . , hn), the parity decomposition is given by(∏

odd i

hi,
∏

even i

hi

)
.

Proposition 49 (Square-free equivalent [7]). Let h ∈ Z[x1, . . . , xn] and let (ho, he)711

be the parity decomposition of h. Then the following equivalences hold:712

1. h = 0 ≡R SF(h) = 0,713

2. h 6= 0 ≡R SF(h) 6= 0,714

3. h > 0 ≡R hoh
2
e > 0 ≡R ho > 0 ∧ he 6= 0,715

4. h ≥ 0 ≡R hoh
2
e ≥ 0 ≡R ho ≥ 0 ∨ he = 0,716

5. h < 0 ≡R hoh
2
e < 0 ≡R ho < 0 ∧ he 6= 0,717

6. h ≤ 0 ≡R hoh
2
e ≤ 0 ≡R ho ≤ 0 ∨ he = 0.718

The resulting (rightmost) equivalent formulas are guaranteed to only feature719

square-free polynomials and are called square-free equivalents.720
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For a semi-algebraic set S given by a quantifier-free formula of real arithmetic,721

we define SFEQ[S] to be the square-free equivalent formula obtained by apply-722

ing the equivalences in Proposition 49 to each atomic formula in S. Using the723

SFEQ reduction as a pre-processing step for the proof rule NSSBC is denoted724

SFEQNSSBC and accordingly for SFEQDI and SFEQNagumo.725

Theorem 50. SFEQNSSBC � NSSBC.726

Proof. If Lp(h) < 0 is true when h is an active component (h = 0), it is nec-727

essarily the case that h is square-free. Thus SFEQ(h) = h (which then equals728

SF(h)) and, therefore, SFEQNSSBC < NSSBC. Let ẋ = p(x) = (−x1,−x2)729

and consider the set S ≡ (x21 + x22− 1)3 ≤ 0. Applying NSSBC fails to prove the730

positive invariance property. Computing the order parity decomposition, we get731

SFEQ(S) ≤ 0 ≡ (x21 + x22− 1) ≤ 0, for which positive invariance under the flow732

of p(x) is proved easily using NSSBC.733

Example 51 (Positive invariant defined by polynomial inequality). Let us con-
sider a system with an unstable limit cycle around a stable origin:

ẋ1 = −x1 − x2 + x1x
2
2 + x31,

ẋ2 = x1 − x2 + x21x2 + x32.

Suppose we wanted to show that the set of states satisfying the following inequality
is positively invariant:

(x21 + x22 − 1)2(x21 + x22 −
1

2
)3 ≤ 0.

Let us refer to this set as h ≤ 0. As can be seen from the phase portrait in Figure
11, the set h ≤ 0 is indeed positively invariant under the flow; however, h is not
square-free, but h ≤ 0 has the following square-free equivalent:

SFEQ[(x21 + x22 − 1)2(x21 + x22 −
1

2
)3 ≤ 0] ≡(

x21 + x22 −
1

2
≤ 0 ∨ x21 + x22 − 1 = 0

)
.

This is an example of a positively invariant set described by a non-strict poly-734

nomial inequality where applying NSSBC will fail. In fact, the barrier certificate735

approach [26] breaks down completely, i.e. no barrier certificate exists for show-736

ing positive invariance of this set.737
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Figure 11: Positively invariant set given by h ≤ 0 (in red).

It is perhaps remarkable is that the output of SFEQ(h) ≤ 0 yields two sub-738

problems, both of which we can solve using only sufficient proof rules: one is739

a non-strict inequality x21 + x22 − 1
2
≤ 0 for which one can apply the method of740

strict barrier certificates to prove its positive invariance; the other is a polynomial741

equality defining a smooth invariant curve x21 + x22 − 1 = 0, which can also be742

handled (using e.g. the proof rule Lie).743

By performing the above steps one proves that both disjuncts are positively744

invariant under the flow, and hence their disjunction is also positively invariant,745

concluding the proof that h ≤ 0 describes a positively invariant set. A formal746

proof of this property within a proof calculus needs an inference rule such as747

NSSBC, some appropriate rule for equational invariants, such as e.g. Lie, P-c or748

DRI, as well as the following special case of the generalization rule [21]:749

(Inv∨)
S1 → [ẋ = p(x)] S1 S2 → [ẋ = p(x)] S2

S1 ∨ S2 → [ẋ = p(x)] (S1 ∨ S2)
.

Theorem 52. SFEQDI ≺� DI750

Proof. Corollary to Proposition 40, since FI is a special case of DI and SFEQ[h =751

0] ≡ SF(h) = 0.752

Theorem 53. SFEQNagumo ∼ Nagumo.753

Proof. Nagumo is necessary and sufficient for proving positive invariance of754

closed sets and SFEQ returns a description of an equivalent set (over the reals).755
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Thus, a closed set S is positively invariant using Nagumo if and only if an equiv-756

alent closed set SFEQ[S] is positively invariant using Nagumo.757

Theorem 54. SFEQLZZ ∼ LZZ.758

Proof. Elementary, since LZZ is necessary and sufficient for proving positive in-759

variance and SFEQ[S] gives an equivalent set in Rn.760

8. Experimental Comparison761

To complement the theoretical deductive power comparison with a practical762

provability study, we empirically compare the running time performance of all the763

proof rules discussed in this paper on a heterogeneous collection of benchmarks764

(76 for algebraic sets and 20 for semi-algebraic sets).765

Many premises of the considered proof rules are universally quantified sen-766

tences over the theory of real arithmetic. The purely existential fragment of real767

quantifier elimination has been shown to exhibit singly exponential time com-768

plexity in the number of variables [1]. However, in practice this has not yet led769

to an efficient decision procedure, so typically it is much more efficient to use770

CAD [3, 4], which has doubly-exponential running time in the number of vari-771

ables. Theoretically, the upper bound on the complexity of deciding a sentence in772

the universal theory of R is given by (sd)O(n), where s is the number of polyno-773

mials in the formula, d their maximum degree and n the number of variables [1].774

Notice, in addition, that the proof rules, C-c, P-c, DRI and LZZ involve rea-775

soning about multivariate polynomial ideal membership, which is an EXPSPACE-776

complete problem over Q [18]. Gröbner basis algorithms allow us to perform777

membership checks in ideals generated by multivariate polynomials. Significant778

advances have been made in algorithms for computing Gröbner bases [9] which779

in practice can be expected to perform very well. Our experimentation relies on780

the implementation of the CAD algorithm in Mathematica (version 10.0.1).781

The examples we used originate from a number of sources—many come from782

textbooks on Dynamical Systems; some from the literature on formal verification783

of hybrid systems; others have been hand-crafted to tease out sweetspots of cer-784

tain proof rules. The most interesting experimental question we seek to address785

here is whether the greater generality of the more deductively powerful proof rules786

also comes at a substantially higher computational cost when assessed across the787

entire spectrum of examples. As a complement to the theoretical deductive power788

relationships between the different proof rules (Section 6), we also seek to iden-789

tify some nuances in the complexity of the conditions in the premises, which the790
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coarse-grained complexity bounds miss, being highly sensitive to the number of791

variables.792

The proof rule Nagumo is intractable since it requires computing the contin-793

gent cone to a given semi-algebraic set. All algebraic sets are of the form h = 0,794

for which LZZ and DRI will ultimately result in the same conditions; only DRI795

and its optimized implementation DRIopt (see Section 7.3) will be considered in796

the benchmarks.6 We have also established that NSSBC cannot discharge any797

invariant algebraic set and that DI applied to candidates of the form h = 0 is798

equivalent to FI. Thus, two comparisons are of interest: the set of proof rules799

for algebraic sets (Section 8.1) and the set of poof rules for semi-algebraic sets800

(Section 8.2).801

From our experiments it emerges that the proof rules exhibit different (and at802

times surprising) trade-offs between generality and efficiency.803

8.1. Running Time Performance for Algebraic Sets804

In this section, the prefix SF is implicit for all Lie-based proof rules. We con-805

sider 4 equally sized classes of invariant sets: (1) 24 smooth invariants, where806

Lie is both necessary and sufficient, (2) 17 isolated equilibria as trivial (for hu-807

mans, not machines) equational invariants for which both Lie◦ and Lie∗ provide808

necessary and sufficient conditions, (3) 17 other singularities and high integrals,809

(4) 18 functional invariants, where FI is necessary and sufficient. Figure 12 com-810

pares the number of invariant varieties that each rule could prove within 60 sec-811

onds. The vertical axis shows cumulative time spent on the problems. All runs812

were performed on an Intel Core i5 1.7GHz machine with 4Gb RAM. Gener-813

ally, we observe DRI performing very well across the entire spectrum of problem814

classes. This is very encouraging, but also at first sight appears to defy intuition815

since it implies that one does not necessarily sacrifice performance when opting816

to use a more deductively powerful rule. In this graph, we also see that over-817

all Lie◦ appears to offer an interesting compromise between deductive power and818

efficiency—it is able to prove a significant body of problems that are out of scope819

for Lie, while avoiding the complexity penalty which affects Lie∗ (due to intro-820

ducing an extra variable).821

A more careful analysis of the benchmarks reveals interesting relationships822

that are obscured in the “big picture”; to see them, one needs to consider the823

6We refer the reader to [11] for a more detailed discussion of the differences and similarities be-
tween the Liu, Zhan & Zhao characterization [16] and the differential radical characterization [10].
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Figure 12: Experimental performance of proof rules: problems solved per time (log scale)

individual classes of invariants for which some of the sufficient conditions in the824

rules are in fact necessary and sufficient. Together with DRI, this yields two825

decision procedures for each class and allows us to focus only on running time826

performance and assess the practicality of each proof rule. In Fig. 13, we observe827

the rules Lie◦ and Lie∗ performing very well in proving invariance of isolated828

equilibria. This is to be expected as Lie◦ in particular was formulated with this829

problem class in mind. It is interesting that DRI remains highly competitive here;830

though its performance is slightly worse in our set of benchmarks.831

It is clear that because proof rules Lie◦ and Lie∗ generalize Lie, they will be832

able to prove every problem in the smooth invariant benchmarks. The running833

time performance of the three rules is almost identical, with Lie offering a slight834

speed-up over its generalizations. The premises of Lie◦ and Lie∗ impose condi-835

tions on states in the singular locus, which is the empty set for smooth invariants;836

this, in practice, appears to be slightly more expensive than checking an equiva-837

lent property that the gradient is non-vanishing on the variety (as in the premise838

of Lie).839

The proof rules FI and P-c, corresponding to conditions with historical ori-840

gins in the study of integrability of dynamical systems, can be seen to perform841

very well in proving functional invariants, while performing very poorly in bench-842
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Figure 13: Number of problems solved per class (log scale).

marks for isolated equilibria. In proofs of smooth invariants their behaviour is843

radically different, with FI proving only a handful of examples and P-c succeed-844

ing in proving most of the problems very efficiently. This can be explained by the845

fact that P-c generalizes FI and is therefore more deductively powerful. P-c ap-846

pears slightly slower at proving functional invariants, but shows very impressive847

running time performance for some problems from the smooth invariant bench-848

marks, where it is the fastest proof rule for many of problems where it succeeds.849

Comparing running time performance with DRI, we see that DRI is only slightly850

slower at proving functional invariants than FI and P-c. Again, the performance851

gap between DRI and the two rules appears to be insignificant for most problems.852

Theoretically, when P-c proves an invariant, DRI applies conditions that are iden-853

tical to the premise of P-c. Hence, although DRI is a generalization, this does854

not come at a significant extra cost for the classes where P-c shows good running855
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time performance. The slightly greater running time of DRI compared to that of856

P-c can be accounted for by the fact that in our implementation DRI computes the857

Gröbner basis for every order N including for N = 1 where such computation is858

unnecessary.859

For functional invariants, FI (i.e. the equality fragment of DI) benefits from the860

fact that the condition in its premise, which requires to show that the Lie derivative861

evaluates to zero everywhere, is equivalent to showing that the Lie derivative is the862

zero polynomial, which can be checked very efficiently by symbolic computation,863

without a decision procedure for real arithmetic.864

In the examples featuring singularities and high integrals in the benchmarks865

we see DRI as the clear winner, simply because there was no other rule that was866

tailored to work on this class. Indeed, the structure of these invariant sets can be867

rather involved, making it difficult to characterize in a single proof rule; however,868

sometimes it is possible to exploit the structure of high integrals inside a proof869

system and arrive at efficient proofs that outperform DRI [11].870

It is not surprising that DRI should ultimately overtake all the other rules in871

terms of deductive power (it is, after all, necessary and sufficient); what is re-872

markable is that the performance we observe for DRI is often very competitive873

to that of the sufficient rules when they also succeed at a proof. This observation874

suggests a possible strategy for proof search in a proof system: give precedence875

to DRI and switch to other sufficient rules if DRI takes longer than some time-out876

value. The rationale behind this decision is our empirical observation that DRI877

performs consistently well on all problem classes we considered, but it is also878

sometimes possible to save time by using a proof rule which is less deductively879

powerful. It is important to note here that the overall proof system benefits from880

including the sufficient proof rules, rather than relying solely upon DRI.881

8.2. Running Time Performance for Semi-algebraic Sets882

In Fig. 14 we compare the running time performance of the proof rule LZZ883

versus the sufficient conditions DI (Fig. 14a) and NSSBC (Fig. 14b). Two dif-884

ferent sets of 10 benchmarks each were selected to exploit the sweetspots of DI885

and NSSBC respectively. We observe that whenever DI can prove invariance in886

the problem at hand, it is much faster than LZZ. This is expected: the quantifier887

elimination problems required by the proof rule LZZ are much more involved than888

those found in the premise of DI. This should be balanced by the fact that DI is889

more restrictive. In the set of benchmarks for NSSBC, one can observe that DI890

does not prove any of the problems. In Fig. 14b, one can also notice that LZZ still891

performs well compared to NSSBC. Indeed, the premise of the proof rule NSSBC892
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Figure 14: Number of problems solved in each class (times on log scale).

can involve complicated real arithmetic problems that are sometimes even more893

difficult than those appearing in the premise of the proof rule LZZ. Generally,894

the size of the conditions in the premise of NSSBC grows rapidly with the size895

of the formula describing the invariant candidate. The distribution property in896

Theorem 19 avoids this problem in LZZ.897

9. Conclusion898

This article investigated an important aspect of deductive safety verification899

of continuous and hybrid dynamical systems. Namely, given the abundance of900

existing sufficient conditions for invariant checking and the recently developed901

necessary and sufficient conditions for real algebraic [10] and semi-algebraic [16]902

invariants, it is crucial to know whether the gains in deductive power come at903

the price of greater computational complexity and poor running time performance904

that would hinder practical applications. The work presented in this article leads905

us to arrive at the following conclusions:906

• Empirically, we observe that the deductively powerful rule for algebraic907

invariants (DRI) performs very well in checking invariance of polynomial908

equalities.909

• P-c is made redundant by DRI (DRI strictly increases the deductive power910

of P-c while being equally efficient).911

• Reducing polynomials to square-free form is always beneficial to the proof912

rule Lie and its generalizations, where it yields improvements in both the913

deductive power and the running time performance.914
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• Using the square-free reduction with the proof rules FI and C-c yields new915

incomparable proof rules, whereas SF with P-c is as powerful as P-c alone.916

• Performing square-free reduction of an invariant candidate may introduce917

a performance penalty for DRI and therefore cannot be regarded as an op-918

timization, even though there are instances for which it yields a speed-up.919

The same can be said of order parity decomposition applied to an invariant920

candidate supplied to LZZ.921

• Sufficient rules DI and NSSBC can afford a speed-up on certain problems,922

but the overall running time performance of the decision procedure LZZ is923

observed to be good.924

• Using a decision procedure LZZ appears to be more efficient than using the925

sufficient condition NSSBC when the positively invariant candidate set is926

described by a large formula.927

Our next step is to use these highlighted insights to build efficient proof strategies928

that intelligently combine different proof methods to efficiently construct formal929

proofs, e.g., by favoring the most deductively complete rules that come without930

significant practical performance penalties on the most common cases of invari-931

ants.932
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