
Formal Verification of ACAS X,
an Industrial Airborne Collision Avoidance System

Jean-Baptiste Jeannin
Carnegie Mellon University
jeannin@cs.cmu.edu

Khalil Ghorbal
Carnegie Mellon University
kghorbal@cs.cmu.edu

Yanni Kouskoulas
The Johns Hopkins University
Applied Physics Laboratory

yanni.kouskoulas@jhuapl.edu
Ryan Gardner

The Johns Hopkins University
Applied Physics Laboratory

ryan.gardner@jhuapl.edu

Aurora Schmidt
The Johns Hopkins University
Applied Physics Laboratory

aurora.schmidt@jhuapl.edu
Erik Zawadzki

Carnegie Mellon University
epz@cs.cmu.edu

André Platzer
Carnegie Mellon University
aplatzer@cs.cmu.edu

ABSTRACT
Formal verification of industrial systems is very challenging, due to
reasons ranging from scalability issues to communication difficul-
ties with engineering-focused teams. More importantly, industrial
systems are rarely designed for verification, but rather for opera-
tional needs. In this paper we present an overview of our experience
using hybrid systems theorem proving to formally verify ACAS X,
an airborne collision avoidance system for airliners scheduled to be
operational around 2020. The methods and proof techniques pre-
sented here are an overview of the work already presented in [8],
while the evaluation of ACAS X has been significantly expanded
and updated to the most recent version of the system, run 13. The
effort presented in this paper is an integral part of the ACAS X
development and was performed in tight collaboration with the
ACAS X development team.

1. INTRODUCTION
In recent years, aircraft collision avoidance has been a case study of
choice for formal verification of cyber-physical systems, in partic-
ular thanks to its very clear specification – absence of collision [2,
4, 5, 12, 16, 18]. However few of those studies were done on indus-
trial systems – i.e., systems which will ultimately equip commercial
aircraft – or as an integral part of the system’s development, with
potential impact on the system’s final design.

On the industrial side, two main systems exist, both developed
under the lead of the Federal Aviation Administration (FAA): the
Traffic Collision Avoidance System (TCAS) [3], which is currently
mandated on all large passenger aircraft and whose design started in
the late 1970s; and the Next-Generation Airborne Collision Avoid-
ance System (ACAS X) [3, 6, 11], a complete redesign of the TCAS

system initiated by the FAA to accommodate recent challenges
such as more crowded airspace and the arrival of Unmanned Aerial
Vehicles. This paper describes our work using hybrid systems mod-
eling and theorem proving to formally assess the safety of ACAS X.
This work is part of ACAS X’s development and has been done
in collaboration with the ACAS X development team. This paper
focuses on what is called run 13 of the XA version of ACAS X
(simply denoted ACAS X throughout this paper) – the most recent
version used for normal operations of manned aircraft.

A typical collision avoidance encounter involves two aircraft: the
equipped ownship aircraft actively trying to avoid colliding with a
non-equipped intruder aircraft. Both TCAS and ACAS X avoid
such collisions by giving exclusively vertical advisories to the pilot
of the ownship – such as “Climb at a rate of 1,500 ft/min” (CL1500)
or “Do not descend” (DND). If both aircraft are equipped with
a collision avoidance system, both pilots can get coordinated ad-
visories. A collision – or Near Mid-Air Collision (NMAC) – is
formally defined as the two aircraft being within rp = 500 ft hor-
izontally and hp = 100 ft vertically – thus forming a safety puck
around the ownship where the intruder should not enter to guaran-
tee the safety of both aircraft. While the design of TCAS was based
on geometric considerations on paths taken by aircraft, the design
of ACAS X is radically different. ACAS X is designed around a
Markov Decision Process (MDP) estimating the probabilities that
two aircraft may climb, descend or turn, in the presence or absence
of an advisory [9]. Based on those probabilities, the MDP is opti-
mized to minimize the probability of an NMAC, while also mini-
mizing (with lesser priority) advisories, disruptive to the pilot. This
optimization results in a score table giving advisories for different
possible configurations. The table is then queried and interpolated
in flight; the result is sometimes corrected with online scores to
take into account factors not considered by the MDP such as prox-
imity to the ground or coordination with other ACAS X-equipped
aircraft, before being communicated to the pilot. The score ta-
ble combines two sub-tables interpolated in succession, one with
698,819 interpolation points and the other with 38,053,125 inter-
polation points, resulting in a large number of combinatorial cases.

Given this design, what does it mean to formally and effectively
verify ACAS X? Observe that absence of NMAC cannot be guaran-

teed in all cases: if the two aircraft are flying head-on at the same al-
titude and are too close to maneuver, no flyable advisory can avoid
an NMAC. Moreover, directly verifying each point in the ACAS X
score table is infeasible because of the size of the table. Instead, we
seek to formally quantify the behavior of ACAS X. Our approach
focuses on the score table and is composed of three major steps.
First, based on a model of the typical behavior of the aircraft, we
symbolically characterize safe regions, geometric configurations of
the ownship and intruder’s positions and speeds such that a given
advisory, if followed correctly, will not result in an NMAC. Sec-
ond, we model both aircraft as a hybrid system combining differ-
ential equations representing continuous motion of the aircraft, and
discrete actions modeling advisories – issued according to the safe
zones – and compliance of the pilot. Using this model, we formally
prove that, if the two aircraft are in a safe region, following the ad-
visory associated with that safe region will not result in an NMAC.
Third and finally, we exhaustively compare the safe regions to the
advisories given by the score table, thus transferring our formal ar-
gument of safety to the operational ACAS X. We identify parts of
the table that are provably safe, but also counterexamples of situa-
tions where following the table could lead to an NMAC. We feed
back those results to the ACAS X development team. The general
formal verification approach used in this work – modeling, proving
and comparing – is not limited to ACAS X, but can potentially be
reused for other collision avoidance systems, or even other systems
whose design is based on optimization or machine learning.

Related Work. Our approach is different from previous comple-
mentary work in various ways. We analyze an independent indus-
trial system instead of hypothetical safe-by-design systems as in [2,
4, 5, 12, 16, 18]. Our hybrid model uses realistic, continuous dy-
namics, and does not discretize the trajectories of aircraft as in [2,
19, 4]. We provide mechanized proofs of correctness of our model
instead of simulations or stress testing approaches as in [1, 6, 10,
13, 18]. Finally, unlike [19, 9], our hybrid model and proofs are
independent from the different versions of the score table used by
ACAS X, thus allowing us to provide universal safe regions that
can be reused for ACAS X or even new systems. A more detailed
discussion of related work can be found in [8].

This paper gives a brief overview of the modeling approach in
Sect. 2 and focuses on the comparison and its results in Sect. 3. Our
ongoing work and future avenues are reported in Sect. 4.

2. OVERVIEW OF THE APPROACH
We present and motivate the hybrid model and construction of the
safe regions. We sketch the main steps of our formal proof of safety.
For more details, we refer the reader to [8] and its companion tech-
nical report [7].

2.1 Modelling ACAS X
Let us consider a 3-dimensional encounter involving an ownshipO
and an intruder I . For the purposes of this study, we make a number
of assumptions on the capabilities and behavior of both aircraft dur-
ing an encounter. We assume that the ownship has the capability to
perfectly estimate the geometrical configuration of the encounter,
i.e., the relative position of the intruder, as well as the speed and
direction of both aircraft; in practice such information is provided
by different sensors as well as communication data exchanged be-
tween aircraft. In particular, we discard all sources of noise and
uncertainty related to the state estimation. We further assume that

the intruder has a constant velocity vector, both horizontal and ver-
tical, with no turn, acceleration or change in its vertical speed, thus
describing a straight-line uniform trajectory. As for the ownship,
we assume that it has a straight-line uniform horizontal trajectory,
with no turn or horizontal acceleration. We, however, allow non-
deterministic changes in the ownship vertical acceleration that are
used to come into compliance with and follow vertical advisories.
These assumptions limit the generality of the result, but the proof
presented in this paper is still powerful because most planes, most
of the time, fly in straight lines; therefore we expect ACAS X to be
able to handle this sort of steady-state pilot model. We make these
assumptions throughout the technical development of the paper, in-
cluding in Sect. 3.

ACAS X can issue one of 16 vertical advisories, summarized in
Table 1. For example, if provided with the (corrective) advisory
“Climb 1,500” (CL1500), the pilot is instructed to climb at a rate
of at least 1, 500 ft/min. Similarly, the (preventive) advisory “Do
Not Climb” (DNC) instructs the pilot to not climb, while the advi-
sory “Maintain Climb” (MCL) instructs the pilot to maintain their
current climb rate. Our model, based on [9], supposes that the
pilot complies with the advisory with acceleration at least ar =
g/4 starting after a delay modeling reaction time of at most dp =
5 seconds; then the pilot continues following the advisory forever
– or until a new advisory is issued. Four advisories (SDES1500,
SCL1500, SDES2500 and SCL2500) can only be used to strengthen
a previous advisory; as such the compliance of the pilot is typically
better, and our model supposes a compliance with an acceleration
of ar = g/3 and within a delay of dp = 3 seconds. ACAS X can
also issue the advisory “Clear of Conflict” (COC), meaning that
no specific action is required from the pilot. All advisories, except
COC, request the pilot to stay either above or below a given vertical
velocity, as shown in Table 1. We model such advisories with two
variables: the target vertical velocity given to the pilot ḣf and a bi-
nary variable w, taking value −1 if the pilot is asked to stay below
that velocity, or +1 if she is asked to stay above.

2.2 Reduction to a 2-dimensional Encounter
Under our assumptions, the 3-dimensional encounter can be re-
duced to a 2-dimensional encounter without loss of generality. This
observation makes the formal model much easier to reason about.
This section gives a geometric intuition of the reduction. A formal
proof, based on a similar argument, is presented in [8].

Figure 1: Reduction to a 2-dimensional encounter

For this reduction let us put ourselves in the reference frame of the
ownship. A 3-dimensional encounter is represented in Fig. 1 – top
view at the top and side view at the bottom. Let r be the distance
between the aircraft, ~rv the relative velocity of the intruder with
respect to the ownship, and θv the angle formed by (OI) and ~rv .

Table 1: Advisories and their modeling variables [8, 7]
ACAS X Run 13 Specification [9] Our model

Vertical Rate Range Strength Delay (s)
Advisory Min (ft/min) Max (ft/min) ar dp w ḣf (ft/min)
DNC2000 −∞ +2000 g/4 5 −1 +2000
DND2000 −2000 +∞ g/4 5 +1 −2000
DNC1000 −∞ +1000 g/4 5 −1 +1000
DND1000 −1000 +∞ g/4 5 +1 −1000
DNC500 −∞ +500 g/4 5 −1 +500
DND500 −500 +∞ g/4 5 +1 −500
DNC −∞ 0 g/4 5 −1 0
DND 0 +∞ g/4 5 +1 0
MDES −∞ current g/4 5 −1 current
MCL current +∞ g/4 5 +1 current
DES1500 −∞ −1500 g/4 5 −1 −1500
CL1500 +1500 +∞ g/4 5 +1 +1500
SDES1500 −∞ −1500 g/3 3 −1 −1500
SCL1500 +1500 +∞ g/3 3 +1 +1500
SDES2500 −∞ −2500 g/3 3 −1 −2500
SCL2500 +2500 +∞ g/3 3 +1 +2500
COC −∞ +∞ Not applicable

The green line (DC), along the vector ~rv represents the horizon-
tal trajectory of the intruder I relative to the ownship O. The gray
disk surrounding the ownship represents the projected safety puck.
Recall that to avoid an NMAC, the trajectory of the intruder must
not intersect the safety puck. If r| sin θv| > rp, then the green
projected trajectory of the intruder does not intersect the projected
safety puck and there is no possible NMAC. Otherwise, let us look
at a side view of the vertical plane along the trajectory (DC), rep-
resented at the bottom of Fig. 1. In this plane, the intruder avoids
an NMAC if and only if it does not enter a virtual puck centered on
a virtual ownship M middle of [DC], with a modified puck radius√
(r2 − r2p sin2 θv) and a modified distance to M, r| cos θv|. This

reduces the 3D encounter to a virtual planar head-on encounter.

2.3 Construction of the Safe Regions
Let us now change the reference frame to put ourselves in the ref-
erence frame fixed to the intruder and centered on the original po-
sition of the ownship. Let h be the relative height of the intruder
with respect to the ownship, ḣ0 the relative vertical velocity of the
ownship with respect to the intruder, and a the relative vertical ac-
celeration of the ownship with respect to the intruder.

Let us consider an ownship initially descending and receiving a
CL1500 advisory, meaning that the pilot should start climbing at
1,500 ft/min. Let us further assume that the pilot reacts immedi-
ately. The nominal trajectory of the ownship is illustrated in red
on Fig. 2: it consists of a parabola at acceleration g/4 until reach-
ing the advised 1,500 ft/min, followed by a straight line climbing at
1,500 ft/min. If the pilot follows the advisory, the ownship will al-
ways be at or above this nominal trajectory. This nominal trajectory
gives rise to a first construction of what we call the safe region: if
the intruder is in the green area to the right, left or below all pucks
centered on a point of the red trajectory, then the intruder is in a
safe region, and no NMAC can occur as long as the straight line en-
counter assumptions are satisfied. Based on the nominal trajectory,
we can mathematically express a symbolic implicit formulation of
the safe region in full generality, given in Fig. 3.

The implicit formulation involves three universal quantifiers over
t, rt and ht. Eliminating those quantifiers is crucial when it comes

to comparing the actual advisories of ACAS X. Quantifier elimina-
tion algorithms could be used but often lead to formulations that are
very large and hard to interpret. Instead, we go back to Fig. 2 and
manually construct the boundaries of the safe region. They con-
sist of a vertical line on the left side created by the left side of the
puck, followed by a half parabola created by the bottom left-hand
corner of the puck, then a horizontal segment of length 2rp created
by the bottom of the puck, and finally another half parabola and a
straight-line at 1,500 ft/min, both created by the bottom right-hand
corner of the puck. This observation leads to an explicit formula-
tion of the safe regions which can be expressed mathematically in
full generality and is given in Fig. 3.

Both formulations are equivalent, but each comes with an advan-
tage: the implicit formulation makes the formal proof of the hy-
brid model easier, while the explicit formulation enables an easy
comparison with the ACAS X table. We formally prove in the
KeYmaera theorem prover [17] that the implicit formulation of the
safe regionCimpl(r, h, ḣ0) and its explicit formulationCexpl(r, h, ḣ0)
are equivalent. This formal proof, along with all the KeYmaera
models and proofs of this paper are available online at
http://www.ls.cs.cmu.edu/pub/acasx.zip.

2.4 Proof of Safety
In order to formally prove the correctness of the safe regions, we
build in Eq. (1) a hybrid model described by the differential dy-
namic logic [15]. We then formally prove, using the hybrid systems
theorem prover KeYmaera [17], that no NMAC can occur, provided
all advisories satisfy the condition Cimpl(r, h, ḣ0) (or equivalently
Cexpl(r, h, ḣ0)).

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ ar > 0∧
2 (w = −1 ∨ w = 1) ∧ Cimpl(r, h, ḣ0)→
3 [((?true ∪
4 ḣf := ∗; (w := −1 ∪ w := 1);

5 ?Cimpl(r, h, ḣ0); advisory := (w, ḣf));
6 a := ∗;
7 {r′ = −rv, h′ = −ḣ0, ḣ

′
0 = a & wḣ0 ≥ wḣf ∨ wa ≥ ar}

8)∗] (|r| > rp ∨ |h| > hp)
(1)

Figure 2: Trajectory of ownship (red) and safe region for the intruder (green), immediate response [8]

Implicit formulation

A(t, ht, ḣ0) ≡

(
0 ≤ t < max(0, w(ḣf − ḣ0))

ar
∧ ht =

war
2
t2 + ḣ0t

)

∨

(
t ≥ max(0, w(ḣf − ḣ0))

ar
∧ ht = ḣf t−

wmax(0, w(ḣf − ḣ0))
2

2ar

)
Cimpl(r, h, ḣ0) ≡ ∀t.∀rt.∀ht.

(
rt = rvt ∧A(t, ht, ḣ0)→ (|r − rt| > rp ∨ w(h− ht) < −hp)

)
Explicit formulation

case1(r, ḣ0) ≡ −rp ≤ r < −rp −
rv min(0, wḣ0)

ar
case2(r, ḣ0) ≡ −rp −

rv min(0, wḣ0)

ar
≤ r ≤ rp −

rv min(0, wḣ0)

ar

bound1(r, h, ḣ0) ≡ wr2vh <
ar
2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp bound2(r, h, ḣ0) ≡ wh < −
min(0, wḣ0)

2

2ar
− hp

case3(r, ḣ0) ≡ rp −
rv min(0, wḣ0)

ar
< r ≤ rp +

rv max(0, w(ḣf − ḣ0))

ar
case4(r, ḣ0) ≡ rp +

rv max(0, w(ḣf − ḣ0))

ar
< r

bound3(r, h, ḣ0) ≡ wr2vh <
ar
2
(r − rp)2 + wrvḣ0(r − rp)− r2vhp

bound4(r, h, ḣ0) ≡ (rv = 0) ∨
(
wrvh < wḣf (r − rp)−

rv max(0, w(ḣf − ḣ0))
2

2ar
− rvhp

)
case5(r, ḣ0) ≡ −rp ≤ r < −rp +

rv max(0, w(ḣf − ḣ0))

ar
case6(r, ḣ0) ≡ −rp +

rv max(0, w(ḣf − ḣ0))

ar
≤ r

bound5(r, h, ḣ0) ≡ wr2vh <
ar
2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp

bound6(r, h, ḣ0) ≡ (rv = 0 ∧ r > rp) ∨
(
wrvh < wḣf (r + rp)−

rv max(0, w(ḣf − ḣ0))
2

2ar
− rvhp

)
Cexpl(r, h, ḣ0) ≡

(
wḣf ≥ 0→

4∧
i=1

(casei(r, ḣ0)→ boundi(r, h, ḣ0))

)
∧

(
wḣf < 0→

6∧
i=5

(casei(r, ḣ0)→ boundi(r, h, ḣ0))

)
Figure 3: Implicit and explicit formulations of the safe region for an immediate response [8]

Eq. (1) is of the form p → [α]q, which says all executions of pro-
gram α starting in a state satisfying logical formula p end up in
a state satisfying q. It is akin to the Hoare triple {p}α{q} with
precondition p and postcondition q. The precondition in Eq. (1)
imposes constraints on several constants, as well as the formula
Cimpl(r, h, ḣ0) that forces the intruder to be in a safe region for an
initial advisory (w, ḣf). We cannot guarantee safety if the intruder
starts in an unsafe region. The postcondition encodes absence of
NMAC. Lines 3 to 5 express the action of ACAS X. The nonde-
terministic choice operator ∪ expresses that the system can either
continue with the same advisory by doing nothing – testing the triv-
ial condition ?true – which ensures it always has a valid choice
and cannot get stuck. Otherwise it can choose a new advisory

(w, ḣf) that passes the safety condition Cimpl(r, h, ḣ0) – the vari-
able “advisory” will be the next message to the pilot. Lines 6 and 7
express the action of the ownship, first nondeterministically choos-
ing an arbitrary acceleration (a := ∗) then following the continuous
dynamics. The evolution of the variables r, h and ḣ0 is expressed
by a differential equation, and requires (using the operator &) that
the ownship evolves towards its target vertical velocity ḣf at ac-
celeration ar (condition wa ≥ ar), unless it has already reached
vertical velocity ḣf (condition wḣ0 ≥ wḣf). Finally, the star ∗

on line 8 indicates that the program can be repeated any number of
times, allowing the system to go through several safe advisories.

2.5 Delayed Pilot Response and “Clear of Con-
flict” Advisory

A similar process can be followed to add a delay parameter that
models the reaction time of the pilot before she starts following
the advisory. During that delay we consider a worst case scenario
where the pilot can climb or descend at an acceleration of g/3.
Details of the approach, including a formally proved model of the
system and equations of the safe regions, can be found in [8].

This approach can be adapted to model a “Clear of Conflict” (COC)
advisory. When a COC advisory is issued, our model allows the
pilot to climb or descend with an acceleration up to g/3. A COC
advisory can be considered safe if and only if it can be followed
by another safe advisory 1 second later – since ACAS X can issue
advisories every second. Thus, COC is safe if and only if there
exists an advisory that is safe for a delay augmented by 1 second.

COC has the same representation as other advisories in the model
– a period of delay followed by compliance with an advisory – but
has a different interpretation. The COC advisory itself only advises
the pilot that the g/3 action for the delay period in the model is safe.
The vertical velocity limit attached to COC represents a future safe
advisory that may be issued after the COC to ensure safety after
the COC period is over. As such, the value of its vertical velocity
limit is variable, and depends on what could be safely issued by the
system after a period of pilot delay and free vertical acceleration.

2.6 Limitations
Our approach and model have some limitations. Our model of a
straight-line uniform trajectory for the intruder disallows any turn
or reaction on its part; in particular it does not handle an intruder
equipped with a collision avoidance system. Similarly, our model
does not allow any turn on the part of the ownship. As a result, our
safe regions do not guarantee NMAC avoidance for different, non-
straight-line pilot behavior, and not satisfying our safety conditions
does not necessarily lead to an NMAC. Furthermore, our model
permits but does not enforce follow-on advisories. Our analysis
thus conservatively rejects advisories that are not safe for all future,
even those that ACAS X would ultimately strengthen or reverse.
But follow-on advisories can change the outcome of the encounter
if there is enough time for the pilot to react to the modified advisory.

In addition of the advisories presented in Table 1, ACAS X can
issue the recently-added Multi-Threat Level-Off (MTLO) advisory
that we do not handle yet in our model or safe regions. Finally,
our comparison with the ACAS X system focuses on its score table
exclusively, and ignores online scores that account for example for
ground proximity or coordination.

3. COMPARISON
For each configuration of the aircraft, the safety conditions pre-
sented in Fig. 3 give us a means of evaluating the safety of the
ACAS X table, by performing a comparison between the provably
safe set of advisories allowed by the safety conditions, and the ad-
visory recommended by the ACAS X table. Any mismatch gives
us a counterexample of a potentially unsafe behavior. This section
presents the method and results of the comparison, then examines
a few automatically generated counterexamples.

3.1 Method
The ACAS X score table used to determine advisories is stored as
a (high-dimensional) grid of points, often called cutpoints. When

the ACAS X table is queried online, it performs a multilinear inter-
polation to combine the table data from the surrounding cutpoints.
Thus, in a sense, all of the information in the table is determined by
its cutpoints. As a first step in analyzing the safety of the ACAS X
table, we compare the advisory given by the system for each cut-
point with the set of advisories that are proved safe in our alternate
model. Throughout this section we call a cutpoint safe if its corre-
sponding ACAS X advisory respects the safe regions.

The comparison we perform covers all of the cutpoints in the ta-
ble exhaustively (except for the recently-added advisory MTLO).
For the run 13 of ACAS X, cutpoints are defined by: relative hori-
zontal motion (angle and magnitude, with 187 and 37 discrete val-
ues); horizontal separation (101 discrete distances); vertical ve-
locities (25 discrete vertical velocities each for ownship and in-
truder); relative vertical separation (45 discrete distances); the cur-
rent state of the advisory, and whether the system estimates it is
being followed (33 distinct states). Some continuous dimensions
have equally spaced cutpoints (e.g. θv is equally spaced in radi-
ans), but others have variable spacing, with points closer in areas
that may be more dangerous (e.g. vertical separation is discretized
in steps of 50 ft between −400 ft and 400 ft, but the discretization
step then becomes increasingly larger – 100 ft, 200 ft, 400 ft, and
finally 4,000 ft at the last step – as the separation increases). All
in all, there are 648,591,384,375 (6.49e11) unique cutpoints to an-
alyze. Because the table may have arbitrarily different entries at
each cutpoint, we cannot rely on any sort of symmetry arguments,
but have to explore the full state space exhaustively. Fortunately
however, we do not have to predict all of the infinitely many possi-
ble future trajectories from a cutpoint to check whether an advisory
is safe, but we can exploit the safe regions identified in Sect. 2 to
reduce this to a simple arithmetic check of the formula in Fig. 3.

Improving upon our previous paper [8], we present new results and
counterexamples featuring a delayed pilot response within the lim-
its assumed in Sect. 2, and counterexamples where the system is-
sued COC. Because the safe regions are symbolic formulas, the
same comparison can be repeated with any other instantiation of the
parameters such as the worst case vertical acceleration (assumed to
be g/3) or the pilot delay (3 seconds). The proofs for the safe re-
gions identify them as safe for any instantiation within the model,
which shows a clear advantage of the formal symbolic approach
whenever achievable.

When the system issues a COC, the comparison computes a two-
sided envelope, since the system isn’t asking the pilot to go in any
particular direction. Each side of the envelope represents the most
extreme acceleration in that direction during the delay (g/3), fol-
lowed by the most extreme advisory after 1 second in the other di-
rection (either DES1500 or CL1500). The upper and lower bounds
of the envelope eventually cross to create a closed area, whose in-
side is considered unsafe. The area outside this curve is safe for
any intruder, and guarantees we can avoid collision if we issue COC
now, by issuing the appropriate follow-on advisory the next second.

3.2 Results
We ran two different analyses, one comparison assuming that the
pilot reacts immediately (no delay), and another one assuming that
the pilot reacts after a 3-second delay. We present the results in Ta-
ble 2. For the 3-second-delay comparison, 97.7% of the cutpoints
we examined were either safe, or had no alternate advisory for
which they could be made safe. Only about 2.3% of the cutpoints
had alternate advisories that could be issued to improve the table’s

Table 2: Results of the comparison
With 3-second delay With no delay

Number of cutpoints Percentage Number of cutpoints Percentage
Points examined 648,591,384,375 100.0% 648,591,384,375 100.0%
Safe or unresolvable points 633,430,949,641 97.7% 632,951,653,646 97.6%
Counterexamples 15,160,434,734 2.3% 15,639,730,729 2.4%

behavior in straight-line encounters. For the no-delay comparison,
we found similar statistics of 97.6% and 2.4%, respectively.

3.3 Counterexamples
We discuss four counterexamples found by the comparison, using
either no delay for pilot response, or a 3-second delay prior to com-
pliance. The counterexamples are visualized by plotting the pre-
dicted ownship and intruder paths in altitude versus time, afer hor-
izontal reduction if necessary (Figures 4 and 5). When visualizing
the counterexample, a particular acceleration and vertical rate tar-
get is chosen during the delay period that when combined with later
compliance to an advisory, results in an NMAC.

The two panels of Fig. 4 show examples where the ACAS X ad-
visory appears to increase the risk of an NMAC over the nominal
risk had the pilot continued on the same trajectory. Panel (a) shows
a counterexample found using no delay in pilot response. In this
case, the ownship was originally planning to cross in altitude with
the intruder. The table issues a DNC advisory, causing the ownship
to reduce its upward velocity to zero at a rate of g/4. This results in
a collision course with the intruder and an NMAC approximately
20 seconds later. After inspecting the ACAS X table, it was deter-
mined that a major cause for this behavior was inaccurate horizon-
tal timing estimation in the table. As a result of this counterexam-
ple, improvements are currently being made to the system’s timing
estimation components, thus demonstrating the benefit of applying
formal verification techniques early on in the development.

Panel (b) of Fig. 4 shows a counterexample where the advisory is-
sued induces a risk for a pilot that responds after a delay. In the
example plotted, during the delay of 3 seconds, the ownship pilot
increases climbing with acceleration g/3 to reach 5,000 ft/min, be-
fore complying with the DNC advisory with acceleration g/4. This
possible behavior puts the ownship on a near collision course with
the intruder. Based on the anticipated miss distance of the nominal
course, advisories CL1500 or MCL would have lowered the risk
here. These counterexamples where ACAS X advisories appear to
induce a problem are collected and communicated to the system
designers for studying and improving the system.

Fig. 5 shows counterexamples where the ACAS X table does not
issue an advisory (i.e., issues COC), but the scenario would be sig-
nificantly safer with an advisory for straight-line encounters. Panel
(a) shows an identified counterexample where, due to the very close
horizontal range of only 150 feet, the intruder is already within
horizontal conflict range. However, the intruder begins 1,000 feet
above the ownship and is descending. Without an advisory, the
ownship could decide to climb for 1 second before an advisory can
be issued by the system. Even if the most extreme available ad-
visory (DES1500) were issued 1 second later, the intruder would
enter the back edge of the puck. If, however, a descend advisory
were issued in the first place and the pilot responds with no delay,
then the observed NMAC be avoided.

In panel (b) of Fig. 5, due to the high horizontal closure rate the

time to horizontal conflict is quite short (about 7 seconds). By not
issuing an advisory at this state, the pilot may reduce climb to only
8, 000 ft/min during the 1 second where no advisory is issued and
keep the same vertical velocity during the assumed delay of 3 sec-
onds after a corrective advisory, such as SDES1500 (descend at
rate 1,500 ft/min) is issued. By the time the pilot starts complying
with the advisory it is already too late to avoid NMAC. Due to the
high vertical rates of this example, the descend advisories are the
only type of advisories available to ACAS X, because the system
is designed to not increase the climbing rate beyond 2,500 ft/min.
These two counterexamples show identified states where not issu-
ing an advisory may actually augment the risk of NMAC.

The comparison we are performing generates billions of counterex-
amples. By categorizing and using them to create simulation tests,
we provide an important body of stress testing scenarios. Analy-
sis and discussion of counterexamples with system designers has
already led to design improvements of the ACAS X system.

4. CURRENT AND FUTURE WORK
Aircraft collision avoidance systems such as ACAS X have a huge
potential to make air travel safer and more efficient. They can help
utilize the increasingly crowded airspace more efficiently. And
when aircraft get too close to one another, they can help the pilot
prevent a mid-air collision. Aircraft collision avoidance systems
are expected to give good advisories under all circumstances while
simultaneously being minimally invasive for the pilot. Among all
possible advisories, the system is supposed to prefer choices that
minimize the impact on the original flight trajectories while also
avoiding the potential of NMAC. The advisories have to be issued
fast enough so that they still resolve the NMAC before it is too late,
respecting that the pilot may take a moment to react to the advisory
and have flexibility in how exactly they follow it. And the sys-
tem should not give advisories that could confuse the pilot under
stress; for example, it should avoid changing its mind too quickly
about whether to climb or descend. Furthermore, the system should
work well whether the intruder is equipped with a collision avoid-
ance system or not. These are a lot of responsibilities and safety
requirements for a system like ACAS X, which make its design
very challenging. How could it ever be possible to design a system
respecting those constraints? And, once designed, how could one
argue that it will really work as intended under all circumstances?

The safety analysis of aircraft collision avoidance systems is chal-
lenging, because of the many possible geometric configurations to
consider, as well as complicated predictions of how the positions
of the aircraft may change over time. Additionally, ACAS X uses
a large machine-optimized score table for its decisions. This set-
ting leads to a disciplined way of reaching optimal compromises
between safety and operational suitability, but makes verification
more difficult. For one thing, classical testing techniques that try
to reach some kind of coverage (e.g. one test case per path through
a program) are hopelessly insufficient for ACAS X, because most
of its crucial decisions come from interpolating the individual data
entries in the table. Testing what happens when following all paths

(a) Pilot responds immediately to the advisory DNC (Do Not Climb). Starting state is r = 4,000 ft, rv = 180 ft/s , θv = 180◦,
h = 1,200 ft, ḣ0 = 3,000 ft/min, ḣ1 = −3,000 ft/min, previous state = ‘None-None’. There is an NMAC at time 0.00 s with
66.66 ft vertical separation and 0.40 ft horizontal separation.

(b) Pilot responds to the advisory DNC after 3 seconds. Starting state is r = 650 ft, rv = 10 ft/s , θv = 130◦, h = 150 ft,
ḣ0 = 2,000 ft/min, ḣ1 = 500 ft/min, previous state = ‘None-None’. There is an NMAC at time 0.00 s with 81.79 ft vertical
separation and 0.01 ft horizontal separation.

Figure 4: Counterexamples with Induced Risk: Original ownship path (dashed blue) and intruder path (red) vs. potential ownship
path (blue) responding to a do-not-climb (DNC) advisory with no delay (panel a) and with a 3-second delay (panel b).

(a) Pilot responds immediately to COC (no advisory) followed 1 s later by Descend 1,500 ft/min. Starting state is r = 150 ft,
rv = 20 ft/s , θv = 170◦, h = 1,000 ft, ḣ0 = 0 ft/min, ḣ1 = −3,000 ft/min, previous state = ‘None-None’. There is an NMAC
at time 24.20 s with 99.84 ft vertical separation and 484 ft horizontal separation.

(b) Pilot responds to COC (no advisory) after 3 s followed 1 s later by Subsequent-Descend 1,500 ft/min. Starting state is
r = 17,500 ft, rv = 2,350 ft/s θv = 180◦, h = 800 ft, ḣ0 = 10,000 ft/min, ḣ1 = 1,500 ft/min, previous state = ‘DND-DND’.
There is an NMAC at time 0.00 s with 10.99 ft vertical separation and 7.50 ft horizontal separation.

Figure 5: Counterexamples of Insufficient Advice: Original ownship path (dashed blue) and intruder path (red) vs. potential ownship
path (blue) responding to a COC advisory, i.e., continuing with no advisory for 1 second followed with the most extreme advisory
available with no delay (panel a) and with 3-second delay (panel b).

through the table would be impossible and not even necessarily
conclusive, even if performed at approximate grid resolutions.

This paper illustrates that the verification problem for ACAS X is
not completely insurmountable, however. An appropriate separa-
tion of concerns in the verification design made it possible to verify
collision freedom of controls respecting safe regions, under a broad
class of behaviors in a precisely specified hybrid system model, and
then subsequently compare those safe regions to the decisions of
the score table. This is a big step forward in the safety analysis
of ACAS X and contributed to a deeper understanding of ACAS X
itself. At the same time, the formal verification of ACAS X pre-
sented in this paper can be improved in several different ways.

More Accurate Model. The hybrid model presented in Sect. 2
has a number of limitations. In many of our counterexamples,
ACAS X would issue an advisory later on, correcting its initial
assessment. In contrast, our current model assumes that an advi-
sory is followed forever. We are working on an improved model
handling such subsequent advisories. Our model also assumes that
both aircraft follow a straight-line trajectory, with no possible turn.
In order to relax this limitation, we are working on extending the
reduction presented in Sect. 2.2 to possibly curved trajectories of
both aircraft.

Another limitation of our approach is that we do not handle intrud-
ers equipped with a collision avoidance system, or encounters with
multiple intruders. This is made more challenging because those
cases are typically handled by online scores after interpolation in
the score table. But currently, our comparison looks only at the
score table and ignores online scores – partly because consider-
ing them would add several orders of magnitude to an already large
comparison calculation. We would like to extend our model to han-
dle equipped and multiple intruders, and extend our comparison to
handle some amount of online scores.

Fewer Counterexamples. The safe regions we identified may
be overly conservative – in particular for the COC advisory – which
leads to false alarms in the comparison with the actual advisories
issued by the ACAS X table. Thus, we may flag an advisory as un-
safe, although it is not, simply because of our worst case assump-
tions. One approach is to improve the precision of our safe regions,
to make them less conservative – while keeping them provably safe.
Another complementary approach is to sort and categorize the au-
tomatically generated counterexamples. This will make it easier
for the development team to navigate through the millions of coun-
terexamples we are generating.

Continuous Region Comparisons. So far, the table compar-
ison has been performed at the discrete grid points of the ACAS X
table. A natural question one may ask is what happens at the points
off this grid? Are the advisories safe for those points? Recall that
the ACAS X decisions for off-grid points result from a multi-linear
interpolation of the values on the neighboring grid points (vertices).
An important fact about the safe regions we identified is that they
characterize which actions are safe at any point in the state space
regardless of the ACAS X grid. We can thus reuse the same model,
proof and safe regions to assess the safety of any ACAS X decision.

Although it is conceptually straight-forward to check if one particu-

Figure 6: A 2-dimensional example of how interpolation can
induce an advisory a to be optimal in the middle of a cell even
if a is not optimal on any vertex. The regions in the diagram
correspond to areas where different actions are optimal. The
color of the circles represents the optimal action at the vertices.

lar point and advisory respect the safe region, checking the safety of
an entire region – typically a hyperrectangle – requires first under-
standing the distribution of optimal ACAS X advisories within the
hyperrectangle before checking a geometrical inclusion. Given the
large number of cells in the score table, we crucially need a good
understanding of the multi-linear interpolation as well as a scalable
method to tackle the inclusion problem. For example, whenever all
the vertices of the considered hyperrectangle have the same advi-
sory, it is sufficient to only check the safety of the vertices. What
is more challenging, however, is when a hyperrectangle exhibits
different advisories on its vertices. Figure 6 shows a 2-dimensional
projection where the vertices have different optimal advisories. Ob-
serve how the multi-linear interpolation computes a different opti-
mal advisory in a non-obvious zone in the middle of the cell.

As a first attempt, our strategy to tackle this problem will be as
follows. If a cell lies, even partially, in an area where a particular
advisory a is unsafe while there exist some points in the cell where
a is an optimal advisory, then we may flag these cell as potentially
unsafe. This is conservative – the points where a is unsafe may be
disjoint from the points where a is optimal. These potentially un-
safe cells can be investigated more closely using sampling methods
focused on the cell, or further decomposed into smaller cells and
recursively analyzed. If, on the other hand, we can prove that no
unsafe action can ever be an optimal action within the cell, then we
have conclusively proven that the cell is safe under our model. We
have a method of answering this cell-checking question by convert-
ing it into a sequence of simple convex optimization problems that
soundly relax the original question.

Optimality vs. Safety. The ACAS X table is optimized to min-
imize the probability of a future NMAC while trying to maintain a
good operational suitability. In contrast, the regions we identified
focus solely on (local) safety aspects for straight-line encounters
with no optimality objectives.

How can one get the best of both worlds, i.e., an optimal ACAS X
table that is provably safe – at least for the most common encoun-
ters? One way of achieving such objective is to integrate the sym-
bolic safe regions into the decisions from the ACAS X table, such
that optimal advisories can only be issued if they are deemed safe

with respect to the safe regions. One may also prefer provably safe
advisories over ACAS X advisories whenever the safety conditions
are violated. We are currently discussing with the development
team the following three possible integration schemes:

1. The safe regions could be incorporated into the MDP opti-
mization itself, e.g. by changing the objective function to
have a prohibitive score for advisories outside the provable
safe regions.

2. As in ModelPlex [14], the final optimal advisory from the
ACAS X table could be checked for compatibility with the
safe regions and replaced by another safe action if needed.

3. Recall that ACAS X uses online scores which adapt the score
from the ACAS X table, for example for ground proximity or
coordination. The safe regions can be added as a new online
score to ACAS X such that it avoids issuing advisories that
are not known to be safe.

The above integration propositions feed the knowledge gained from
the safety analysis back into the design of ACAS X to help make
it an even safer system while preserving its main objective. Ap-
proach 1 gives the most direct feedback into the original system
optimization but leaves the prohibitive score to use unspecified.
Approach 2 is conceptually very clean and comes with strong the-
oretical guarantees [14] about the final system whenever the as-
sumptions of the hybrid model are met. It requires, however, an ad-
ditional decision component into the system architecture. Finally,
approach 3 leads to a particularly smooth integration, because the
ACAS X infrastructure already uses online scores for various pur-
poses on a routine basis. Further evaluation is needed to deter-
mine which score to use and how it would interact with other online
scores.

Acknowledgments
This research was conducted under the sponsorship of the Federal
Aviation Administration Traffic Alert & Collision Avoidance Sys-
tem (TCAS) Program Office (PO) AJM-233 under contract number
DTFAWA-11-C-00074. Additionally, support for the basic verifi-
cation technology used as a foundation for this research was pro-
vided by the National Science Foundation under NSF CAREER
Award CNS-1054246.

The authors would like to warmly thank Neal Suchy for his lead
of the ACAS X project and support of this work, as well as Stefan
Mitsch and Jan-David Quesel for their support of the KeYmaera
tool. The authors would also like to thank Jeff Brush, Jessica Hol-
land, Robert Klaus, Barbara Kobzik-Juul, Mykel Kochenderfer, Ted
Londner, Sarah Loos, Ed Morehouse, Wes Olson, Michael Owen,
Joshua Silbermann, and the ACAS X development team for inter-
esting remarks.

5. REFERENCES
[1] B. J. Chludzinski. Evaluation of TCAS II version 7.1 using

the FAA fast-time encounter generator model. Technical
Report ATC-346, MIT Lincoln Laboratory, April 2009.

[2] G. Dowek, C. Muñoz, and V. Carreño. Provably safe
coordinated strategy for distributed conflict resolution. In
AIAA Guidance Navigation, and Control Conference and
Exhibit, 2005.

[3] Federal Aviation Administration. Introduction to TCAS II.
Version 7.1, February 2011.

[4] A. Galdino, C. Muñoz, and M. Ayala. Formal verification of
an optimal air traffic conflict resolution and recovery
algorithm. In WoLLIC, volume 4576 of LNCS. Springer,
2007.

[5] K. Ghorbal, J.-B. Jeannin, E. Zawadzki, A. Platzer, G. J.
Gordon, and P. Capell. Hybrid theorem proving of aerospace
systems: Applications and challenges. Journal of Aerospace
Information Systems, 2014.

[6] J. E. Holland, M. J. Kochenderfer, and W. A. Olson.
Optimizing the next generation collision avoidance system
for safe, suitable, and acceptable operational performance.
Air Traffic Control Quarterly, 2014.

[7] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner,
A. Schmidt, E. Zawadzki, and A. Platzer. A formally verified
hybrid system for the next-generation airborne collision
avoidance system. Technical Report CMU-CS-14-138,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 2014. KeYmaera files available at
http://www.ls.cs.cmu.edu/pub/acasx.zip.

[8] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner,
A. Schmidt, E. Zawadzki, and A. Platzer. A formally verified
hybrid system for the next-generation airborne collision
avoidance system. In C. Baier and C. Tinelli, editors, TACAS,
volume 9035 of LNCS, pages 21–36. Springer, 2015.

[9] M. J. Kochenderfer and J. P. Chryssanthacopoulos. Robust
airborne collision avoidance through dynamic programming.
Technical Report ATC-371, MIT Lincoln Laboratory,
January 2010.

[10] M. J. Kochenderfer, L. P. Espindle, J. K. Kuchar, and J. D.
Griffith. Correlated encounter model for cooperative aircraft
in the national airspace system version 1.0. Technical Report
ATC-344, MIT Lincoln Laboratory, October 2008.

[11] M. J. Kochenderfer, J. E. Holland, and J. P.
Chryssanthacopoulos. Next generation airborne collision
avoidance system. Lincoln Laboratory Journal, 19(1):17–33,
2012.

[12] S. M. Loos, D. W. Renshaw, and A. Platzer. Formal
verification of distributed aircraft controllers. In HSCC,
pages 125–130. ACM, 2013.

[13] J. Lygeros and N. Lynch. On the formal verification of the
TCAS conflict resolution algorithms. In IEEE Decision and
Control, volume 2, pages 1829–1834. IEEE, 1997.

[14] S. Mitsch and A. Platzer. ModelPlex: Verified runtime
validation of verified cyber-physical system models. In
B. Bonakdarpour and S. A. Smolka, editors, RV, volume
8734 of LNCS, pages 199–214. Springer, 2014.

[15] A. Platzer. Differential dynamic logic for hybrid systems. J.
Autom. Reas., 41(2):143–189, 2008.

[16] A. Platzer and E. M. Clarke. Formal verification of curved
flight collision avoidance maneuvers: A case study. In FM,
volume 5850 of LNCS, pages 547–562. Springer, 2009.

[17] A. Platzer and J.-D. Quesel. KeYmaera: A hybrid theorem
prover for hybrid systems. In IJCAR, volume 5195 of LNCS,
pages 171–178. Springer, 2008.

[18] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for
air traffic management: A study in multiagent hybrid
systems. IEEE Transactions on Automatic Control,
43(4):509–521, 1998.

[19] C. von Essen and D. Giannakopoulou. Analyzing the next
generation airborne collision avoidance system. In TACAS,
volume 8413 of LNCS, pages 620–635. Springer, 2014.

