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Basics

• k denotes an algebraically closed field.

• k[X ] = k[X1, . . . ,Xn]: the ring of polynomials over k

• I = (f1, . . . , fs) ⊂ k[X ] ideal generated by the fi

I :=

{
f ∈ k[X ] | ∃λ1, . . . , λs ∈ k[X ], f =

s∑
i=1

λi fi

}

• The Radical of I , denoted
√
I , is an ideal of k[X ] defined as follows.

√
I := {f ∈ k[X ] | ∃m ∈ N. f m ∈ I}

Hilbert Basis Theorem
Every ideal of k[X ] is finitely generated.
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Varieties and Vanishing Ideals

Definition: Variety

Let I = (f1, . . . , fs) be an ideal of k[X ]. A variety V(I ) is a subset of kn

defined as follows.

V(I ) := {x ∈ kn | f1(x) = 0, . . . , fs(x) = 0}

Definition: Vanishing ideal

Let S be a subset of kn. A Vanishing ideal I(S) is an ideal of k[X ] defined
as follows.

I(S) := {f ∈ k[X ] | ∀x ∈ S , f (x) = 0}
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Monomial Orders

• A monomial is an element of k[X ] of the form Xα1
1 · · ·Xαn

n .

• Notation: Xα, α := (α1, . . . , αn) ∈ Nn.

Definition: Monomial Order
Total order on the set of monomials satisfying:

1 For all γ ∈ Nn, Xα < X β implies XαX γ < X βX γ ,

2 For all α ∈ Nn, Xα > 1, so 1 is the minimal element.

Example: Lex Ordering

Extends the lexicographic ordering X1 > X2 > · · · > Xn as follows:

Xα > X β if and only if


α1 > β1

or α1 = β1 ∧ α2 > β2

or
...
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Leading Terms, Monomials and Coefficients

For a fixed monomial order (>), one can write any polynomial f ∈ k[X ] as
follows:

f = cXα +
s∑

i=1

aiX
βi

such that c ̸= 0 and Xα is bigger than any other monomial with a nonzero
coefficient (formally, for all i = 1, . . . , s: ai ̸= 0 implies Xα > X βi ).

Definitions

• LT(f ) = cXα: Leading Term of f

• LM(f ) = Xα: Leading Monomial of f

• LC(f ) = c: Leading Coefficient of f
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Division / Reduction

Theorem
Given non zero polynomials f , f1, . . . , fs ∈ k[X ] and a monomial ordering
(>), there exists r , q1, . . . , qs ∈ k[X ] such that

• f = (
∑s

1 qi fi ) + r

• No term in r is divisible by any LT(fi )

• LT(f ) = max>{LT(qi )LT(fi ) | qi ̸= 0}

Given I an ideal of k[X ], the leading terms ideal of I is defined by

LT(I ) := ({LT(f ) | f ∈ I})

That is, the ideal generated by all the LT of all the polynomials in I . By
definition the following inclusion of ideals holds

(LT(f1), . . . , LT(fs)) ⊂ LT(I )
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Gröbner Bases

• LT(I ) is ”bigger” than (LT(f1), . . . , LT(fs))

• X > Y : f1 = X 2 + X ; f2 = X 2 + Y

• (LT(f1), LT(f2)) = (X 2,X 2) = (X 2)

• f1 − f2 = X − Y ∈ I := (f1, f2)

• LT(X − Y ) = X is in (LT(I )). Clearly X /∈ (X 2)

Definition: Gröbner Bases
Fix the monomial order (>). Let I be an ideal of k[X ]. G is a Gröbner
Basis for I with respect to (>) if and only if

(LT(g) | g ∈ G ) = (LT(I )) .

In words: The leading terms ideal of G is generated by the leading terms
of the generators of G .
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Reduced Gröbner Basis

G = (g1, . . . , gm) is reduced if for every i = 1, . . . ,m, LC(gi ) = 1 and
LT(gi ) does not divide any term of any gj , j ̸= i .

Example

• G = (X + Y 2,Y ) is a non reduced Gröbner basis.

• (X ,Y ) is a reduced Gröbner basis.

Theorem
Every ideal has a unique reduced Gröbner Basis representation (up to the
fixed monomial order).
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Nullstellensatz

k is algebraically closed.

Theorem: Hilbert’s Nullstellensatz

• Strong: I(V(I )) =
√
I

• Weak: V(I ) = ∅ if and only if 1 ∈ I

Corollaries: Solvability and Gröbner Bases

I is an ideal of k[X ]. The following statements are equivalent:

• I ̸= k[X ]

• 1 /∈ I

• V(I ) ̸= ∅
• I has a Gröbner Basis having nonconstant polynomials

• The reduced Gröbner Basis of I is different from {1}
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Finiteness Theorem

The Finiteness Theorem
Let I be an ideal of k[X ]. The following statements are equivalent.

• V(I ) is finite (finite set of points in kn)

• k[X ]/I is a finite-dimensional vector space over k

• Only a finite number of monomials are not in LT(I )

In addition dimk k[X ]/I gives exactly the number of solutions (counted
with their multiplicities) of the system defined by I .

Example

• I = (X 2 + 1)

• k[X ]/I is isomorphic, as a vector space, to k2: elements of k[X ]/I are
of the form a+ bX where a, b ∈ k

• When k is algebraically closed, X 2 + 1 has two roots since it is of
degree 2
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Computational Aspects

• Gröbner Bases are akin to Standard Bases by Hironaka (1964).

• The name Gröbner was introduced by Buchberger in his thesis (1965)
where he gives a procedure to compute such bases.

• The coefficients of the intermediate (S) polynomials computed while
generating a basis could be very large, likewise their polynomial
degrees can be as large as n2 if one starts with polynomials of degree
n.

• The fastest known implementation if Fougere’s F4 and F5 packages
(available in Maple), they are however limited in the size of X and the
total degrees of the fi .

• Almost all computer algebra systems have an implementation the
Buchberger algorithm (possibly with different optimizations and
heuristics).
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Practical Applications

This classical correspondence between Algebra and Geometry, together
with the existence of procedures to compute Gröbner Bases in many
practically relevant cases have many applications:

• Solvability of a system of polynomial equations

• Finite solutions test

• Ideal membership test

• Polynomial reduction (division)

• Elimination theory (next section)
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Elimination Theorem

• k[X ,Y ] = k[X1, . . . ,Xs ,Ys+1, . . . ,Yn]

• A monomial in k[X ,Y ] has the form XαY γ

• Let I be an ideal of k[X ,Y ]

Elimination Order
A monomial ordering eliminates X if Xα > X β implies XαY γ > X βY δ for
every Y γ and Y δ. (For instance, the lex monomial ordering is an
elimination order.)

Elimination Ideal
I ∩ k[Y ] is the elimination ideal of I that eliminates X .

Elimination Theorem
Let G be a Gröbner basis of I for a monomial order (>) that eliminates X .
Then G ∩ k[Y ] is a Gröbner Basis of the elimination ideal I ∩ k[Y ] for the
monomial order on k[Y ] induced by (>).
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Partial Solutions and Projections

Given the coordinates x1, . . . , xs , ys+1, . . . , yn, let

πs : An → An−s

denote the projection onto the last n − s coordinates.

Variety of Partial Solutions

πs(V(I )) ⊆ V(I ∩ k[Y ]) .

Moreover, V(I ∩ k[Y ]) is the Zariski Closure of the projection, that is the
smallest variety containing the set πs(V(I )).

Example

I = (XY − 1,Z − Y ), with respect to the lex order (X > Y > Z ), the
generator of I form a Gröbner Basis. Thus I ∩ k[Y ,Z ] = (Z − Y ). So
(y , z) = (0, 0) is in V(I ∩ k[Y ]) but not in πs(V(I )).
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Solving by Triangulation

• f1, . . . , fs ∈ k[X1, . . . ,Xn]

• Use the lex order X1 > · · · > Xn which is an elimination order for
each Xi

• Compute a Gröbner Basis G with respect to that order

• Then G ∩ k[Xn] is a principal ideal, thus one gets a univariate
polynomial in Xn to solve

• Now compute G ∩ k[Xn−1,Xn], knowing the Xn, this gives a
univariate polynomial in Xn−1 alone

• Keep iterating till solving the entire system
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Example

Order X > Y > Z .

Original System

f1 = X 2 + Y + Z − 1

f2 = X + Y 2 + Z − 1

f3 = X + Y + Z 2 − 1

Gröbner Basis

g1 = X + Y + Z 2 − 1

g2 = Y 2 − Y − Z 2 + Z

g3 = 2YZ 2 + Z 4 − Z 2

g4 = Z 6 − 4Z 4 + 4Z 3 − Z 2

Elimination Ideals

I1 = G ∩ k[Z ] = (g4)

I2 = G ∩ k[Y ,Z ] = (g2, g3, g4)

I3 = G ∩ k[X ,Y ,Z ] = (g1, g2, g3, g4)
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Definitions

Given a polynomial ordinary differential equation ẋ = f(x).

Initial Value Problem

x(t), t ∈ U solution of the Cauchy problem

(
dx(t)

dt
= f(x), x(0) = x0

)

Orbit

Ox0 := {x(t) | t ∈ U} = {x ∈ Rn | ∃t ∈ R, x = φt(x0)} ⊂ Rn

Invariant Region S ⊂ Rn

∀x0 ∈ S ,∀t ∈ U, x(t) ∈ S

K. Ghorbal (INRIA) 17 COMASIC M2 17 / 24



Algebraic Invariant Equations

f = (−x1 − 2x21x2,−x2),
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p(x1, x2) = (x2(0)−x1(0)x2(0)2)x1 − x1(0)(x2 − x1x
2
2 ) = 0
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More Definitions

Gradient

∇p :=

(
∂p

∂x1
, . . . ,

∂p

∂xn

)

Lie Derivation

Df(p) :=
dp(x(t))

dt
= ∇p · f (ẋ = f)

Closure (Zariski Topology)

Ōx0 := V(I(Ox0))
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Properties of the Zariski Closure

Proposition1: Dimension and Integrability

Ox0 ⊂ Ōx0

Proposition2: Stability under Lie derivation

I(O(x0)) is a (proper) differential ideal for Df , that is, Df(p) ∈ I(O(x0))
for all p ∈ I(O(x0))

Example: Zariski Dense Varieties

ẋ = x ⇝ O(x0) = [0,∞[ ⇝ I = ⟨0⟩ ⇝ Ōx0 = V(I(O(x0))) = R
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Characterizing Elements of I(O(x0))

Definition: Differential Order
The differential order of p ∈ R[x] denotes the length of the chain of ideals

⟨p⟩ ⊂ ⟨p,Df(p)⟩ ⊂ · · · ⊂
〈
p,Df(p), . . . ,D

(Np−1)
f (p)

〉
=: ∂p.

Np = card(∂p) (<∞ since R is Notherian).

Theorem
The polynomial p is in I (O(x0)) if and only if D

(i)
f (p)(x0) = 0, for all

i = 0, . . . ,Np − 1.

Proof Sketch
←: Since x(t) is analytic, p(x(t)) is also analytic. Thus for a nonempty
open neighborhood V ⊂ U around 0, the null Taylor series of p(t) is equal
to p, thus p = 0 for all U.
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Corollaries

Corollary1

An algebraic set V(⟨p⟩) is invariant for f if and only if

∂p ⊂ I(V(⟨p⟩)) .

Corollary2

For each x0, there exists a unique (up to multiplication by a constant and
rearrangement of its factors) p ∈ R[x] such that

∂p = I(O(x0)) .
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Decidability: ∂p ⊂ I(V(⟨p⟩))

Given f and p ∈ R[x], the invariance of V(⟨p⟩) is decidable.

D
(Np)
f (p) =

∑Np−1
i=0 λiD

(i)
f (p) (λi ∈ R[x]) ∧ p = 0→

∧Np−1
i=1 D

(i)
f (p) = 0

. . .

D
(3)
f (p) =

∑2
i=0 λiD

(i)
f (p) (λi ∈ R[x]) ∧ p = 0→

∧2
i=1D

(i)
f (p) = 0

D
(2)
f (p) = λ0p + λ1Df(p) (λi ∈ R[x]) ∧ p = 0→ Df(p) = 0

Df(p) = λp (λ ∈ R[x])
V (⟨p⟩) is an invariant algebraic set

• Existence of λi : Gröbner Basis

• p = 0→ D
(i)
f (p) = 0: (Universal) Quantifier Elimination
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