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We established a formal link between typed A-calculi and cartesian closed categories (Curry-Howard-
Lambek isomorphism). But what if we remove types? To which structure the pure (untyped) A-calculus
is isomorphic? Let’s see!

Recall that a (small) category with one object is a monoid, that is a semigroup with a unitary element.
(recall that small means that the class of morphisms between any two elements is a set. It is a technicality
that you can drop in what follows.)

0. Describe a small closed cartesian category with only one object (elements and arrows are to be
made explicit).

0. sol a cartesian closed category has a terminal object, thus the unique object of the monoid is that
terminal object, which necessarily has a unique identity reflexive map. Thus we have the simplest
possible non-empty category that has one element and one arrow and which satisfies all the axioms
of a ccc.

A C-monoid (for Curry or Cartesian) is a monoid J{ that is almost a cartesian closed category in
the sense that it enjoys similar structure. Technically J/( has an extra structure (z, 7', €, *, <>), where =,
7', and € are elements (or nullary operations) of Jl, (—)* is a unary operation and < —, — > is a binary
operation satisfying the following identities for all a, b, ¢, h, and k (where composition is denoted by
simple concatenation, so ab denotes aob):

(Al) n<a,b>=a
(A2) o’ <a,b>=b
(A3) <me,n'c>=c
(Ad) e<h*zm,n’ >=h
(A5) (e < km,n' >)* =k

1. Recall briefly what do these axioms refer to in a standard cartesian closed category? (observe that
the type subscript is omitted since there exists only one element.)

1. sol If we had a cartesian closed category, z and z’ would be the projections, € the evaluation mapping
(for the exponential), and the star (x) is the transposition.

1. What’s missing to have a full cartesian closed category?
1.’ sol The terminal object.
2. Using the above axioms, prove the following consequences for all a, b, ¢, h, and k

(A6.) <a,b>c=<ac,bc>
(A6.s0l) <ag,b>c=<rm<ab>c,n’' <ab>c>=<ac,bc >



(A7) <z, n’ >=1by A3, Al and A2.
(A7. sol) < m,n' >=< x1,z’'1 >= 1 by the identity law and A3.
(A8.) e<h*a,b>=h<a,b>

(A8.s0l) h<a,b>=¢e¢< h*rm,n' ><a,b>=c¢ < h*r <a,b> 7 <a,b>>=¢€ < h*a,b>by Ad
then A6 and A1/A2.

(A9.) h*k = (h < kr,z’ >)*

(A9. sol) (h < krn,7’ >)* = (e < h*r,n' >< kn,n’ >)* = (e < h*krm,n’' >)* = h*k by A4, A6, and
A5

(A10.) €* =1
(A10. sol) 1= (e < 1z, 7’ >)* = (e)* by A5, A7, and A5

3. Like we did in cartesian closed categories, let axb denote < arx, bz’ > and g/ = (ge < 7, fn' >)*.
Prove the following

(A11.) (axb)(cxd)=acxbd

(All sol) (ax b)(c X d)=<an,br’ > (cXd)=<an(cXd),br'(cxd)>=< acr,bdr’ >= ac X bd
(A12) g'h = (ge < hx, fr' >)*

(A12.s0l) g/h=(ge <z, frn' >)*h=(ge <z, fn' >< hr, 7’ >)" =(ge < hx, fr' >)*
(A13.) glkh = (gk)*))

(A13. s0l) g/k" = (ge < khz, frn' >)* = (ge < (ke < nx, ha' >)*, fn' >)* = (gke < nx, ha' ><
L, fn' >)* = (gke < m,hfn' >)* = (gk)n)

We can form a category of C-monoids where arrows are morphisms, called C-homomorphisms, that
preserve the operations z, 7', (—=)*, and < —, — >*. Given a monoid J(, we can also form the polynomial
C-monoid [ x] by the usual construction of universal algebra (like we did for cartesian closed category):
the elements of J[x] are polynomials (or words) built up from x and the elements of J using the C-
monoid operations modulo the axioms A1-AS5. In particular the mapping & : M — Jl[x] which sends
every elements of J{ onto the corresponding constant polynomial in J{[x] is a C-homomorphism.

C-monoids have also the property of functional completeness, that is for every polynomial @(x) in
the indeterminate x, there exists a unique constant f in J such that f < (xz’)*, 1 >= @(x) in M[x].

Let p, @(x) be defined inductively on the length of the word ¢(x) by

(i.) p .k = k' if k is a constant

(i) px=¢€
(iii.) py <w(x),&(x) >=< p,w(x), p,&(x) >
(1v.) p €y (x) = p,E(X) < 7, py(x) >

v) p(w(x)*) = (pw(x)a)*

where @ =< zz,< 7'z, 7’ >> (I am being a slightly informal with the equality here, since ideally, we
would have used two different signs, one for identical words and one for the equality over equivalence
classes; it won’t matter much here, but it is good to keep it in mind).

4. As a consequence of functional completeness, prove that if g(x) is a polynomial in the indetermi-
nate x over a C-monoid J/, then there exists a unique g in J such that g 2 x = ¢@(x) where the
binary operator " is as follows g2a = € < g(ax’)*, 1 >.

4. sol The natural candidate for g would be the transpose of f in J, that is f*, where the existence
of f is ensured by functional completeness. By A8, one therefore gets g1 x = f*i1x = ¢ <
frxa’)y 1 >= f < (xax)*,1>= @(x).



S.

5. sol

6. sol

Suppose one writes A,@(x) for (p,@(x))*, where p, is as above (using the A-calculus notation).
Rephrase (4.) using 4,.

When ¢(x) is a constant k in M, f = p,.k = kx’ whichisin Jl. Let’s check. (kz') < (xz')*,1 >=
k = @(x). When ¢(x) is a variable x, then f = p,x = e which is also in M for ¢ < (xz')*,1 >=
(x7") < 1,1 >= x1 = x = @(x) (by A8). When ¢(x) has the form < y(x), &(x) > and both w(x)
and &(x) are of length 1 (either constants or variables), we set f =< p,y(x), p,&(x) > which is
also in Jl since we’ve just seen that p, is acting as a binder for x. One gets < p, .y (x), p,&(x) ><
(xz")*,1 >=< pw(x) < (xz')*,1 >, p E(x) < (xzx')*, 1 >>=< y(x),&(x) >= @(x) as desired
(the last equality holds because of the length of the operands and what we have just seen). Thus g is
defined inductively as f* = (p,@(x))*. This further gives p(x) = gix = (1, @(x))2x (morally, one
is applying the functional abstraction of @(x), which is 4, @(x) to x to get, well, ¢(x)). Likewise
for the other cases, and by induction on the length of @(x) one gets the desired f for any ¢(x)
(constructively!).

Use the universal property of J([x] to state the § reduction. (The universal property of J#l[x] says
that for every C-homomorphism f : Ml — 9B and every element B € 9B, there exists a unique
C-homomorphosm fp : M[x] — 9B such that fzh = f and fz(x) = B.)

We want to show that, for any element a of M, (1, ¢(x))2a = @(a). We just proved that (4, @(x))?2
x = @(x).

The universal property of 4 with the identity over J( as f ensures the existence, for each element
a of Jl of a C-homomorphism (1), : M[x] — A such that (1 4),h = 1,4 and (1 4),(x) = a
for every a € Jll. In particular, (1 4),@(x) = @(a) since 1 4 sends x to a and leaves the rest as is.
Let g = A, (x). We have (1 4),(g2x) = (1 4),(e < gxx')*, 1 >) =€ < glax’)*,1 >= g a, and
(1 ), 2(x) = @(a). Since g2 x = p(x), we get g1a = @(a) for all a € M.

An interesting feature of C-monoids is that they enjoy the following fixed point theorem.

7.
7. sol
8.

8. sol

Prove that for every polynomial ¢(x) in /{[x], there exists an element a € A such that ¢(a) = a.
Leta = A, @(xx). Then ara = (A, p(x 1 x))2a = @(ala). What’s the meaning of ¢(x 2 x) here?
Do you think that a C-monoid can incorporate propositional logic? Comment.

Propositional logic has a unary negation operation that doesn’t have a fixed point which contradicts
the result we just proved.

Bonus B. Show thatin any cartesian closed poset with joins pVvg, the following law of IPC (Intuitionistic
Propositional Calculus) holds

(pve)=>r)=>(p=>r)A(g@=>r)

Generalize this result to an arbitrary category (not necessarily poset) by showing that there is always an
arrow of the corresponding form.

Bonus BB. A functor F : i — 3B is essentially surjective on objects if for all B € B, there exists
A € d such that F(A) = B. Prove that a functor is an equivalence if and only if it is faithful, full, and
essentially surjective on objects (restrict to small categories).



