
Exam 2021-2022

Khalil Ghorbal

January 2022

Pick up at least two out of the three proposed problems below according to your taste. If you en-
joyed the mindset of Category theory, check out Problem 1, it has it all. If, however, you don’t really
care whether every monad arises from an adjunction, Problem 2 might be more suited as it manipulates
deductive systems: all you need is a firm logician hat. Finally, if you are more language-oriented, you
can chew on the (untyped) constructions of Problem 3. This being said, keep in mind that the three sug-
gested problems are part of the same story. The more you appreciate this fact, the more enlightened and
powerful you will be, regardless of the next steps of your curriculum.

Stay focused. Clear your thoughts. Enjoy the dive.

1



1 Functional Completeness as a Universality Property

A comonad on a category A is a monad in the opposite category A𝑜𝑝, that is a cotriple (𝑆, 𝜀, 𝛿), where
𝑆 ∶ A→ A is a functor equipped with a counit and a co-multiplication satisfying the associativity and
identity laws (needless to say that 𝜀 and 𝛿 are natural transformations). As we did for monads, we can
define the Kleisli category A𝑆 of a comonad (𝑆, 𝜀, 𝛿) on Awith morphisms 𝐴 → 𝐵 in A𝑆 whenever
𝑆𝐴 → 𝐵 is a morphism in A (everything else is like we’ve seen but with inverting the arrows).

1. State explicitly the associativity and identity laws for a comonad (three diagrams are expected.)

2. State explicitly the identity arrows and composition of morphisms in A𝑆 (a diagram is expected
for the composition).

Let Abe a Cartesian category where 𝜋𝐴,𝐵 and 𝜋′
𝐴,𝐵 denote the projections out of the product 𝐴 × 𝐵 of

𝐴,𝐵 ∈ A. We use ⟨𝑓, 𝑔⟩ to denote the pairing of 𝑓 and 𝑔, that is the unique map 𝐶 → 𝐴 × 𝐵 where
𝑓 ∶ 𝐶 → 𝐴 and 𝑔 ∶ 𝐶 → 𝐵.

For any object 𝐴 in A, define 𝑆𝐴 ∶= 𝐴×−, 𝜀𝐴(𝐵) ∶= 𝜋′
𝐴,𝐵, 𝛿𝐴(𝐵) ∶= ⟨𝜋𝐴,𝐵, 1𝐴×𝐵⟩ (for clarity,

we used 𝜀𝐴(𝐵) and 𝛿𝐴(𝐵) instead of (𝜀𝐴)𝐵 and (𝛿𝐴)𝐵 to avoid double subscripts).

3. Show that (𝑆𝐴, 𝜀𝐴, 𝛿𝐴) defines a cotriple of A. We will denote A𝑆𝐴
, or simply A𝐴, the Kleisli

category of the comonad (𝑆𝐴, 𝜀𝐴, 𝛿𝐴) on A.

Let A[𝑥] denote the polynomial category defined over Aassuming the undetermined 𝑥 ∶ 𝐴0 → 𝐴. Let
𝐻𝑥 ∶ A→ A[𝑥] denote the Cartesian functor that sends 𝑓 ∶ 𝐴 → 𝐵 onto the constant polynomial with
the same name in A[𝑥] (in words, 𝐻𝑥 defines a trivial injection that regards constants as polynomials).
The functional completeness can be rephrased as the following universality property for 𝐻𝑥. Given a
Cartesian category A, any Cartesian functor 𝐹 ∶ A → B and any arrow 𝑦 ∶ 𝐹 (𝐴0) → 𝐹 (𝐴) in B,
there exists a unique Cartesian functor 𝐹 ′ ∶ A[𝑥] → B such that 𝐹 ′(𝑥) = 𝑦 and 𝐹 ′◦𝐻𝑥 = 𝐹 ′𝐻𝑥 = 𝐹 .
(The proof of this statement is very similar to—if not the same as—the proof of the deductive theorem
deconstructed in Section 2). We will use this universality property to show (with elegance) that the
polynomial category A[𝑥] is isomorphic to the Kleisly category A𝐴 (𝐴 and 𝑥 are indeed related since 𝐴
is the codomain of 𝑥).

4. Show that A𝐴 is a Cartesian category. (You need to show that a product exists in A𝐴, and a product
is not a mere isolated object, that is you need to explicit the projections and maps to the terminal
object—as a special case of the product of zero elements).

Define the functor 𝐻𝐴 ∶ A → A𝐴 by 𝐻𝐴(𝐵) = 𝐵 and 𝐻𝐴(𝑓 ) = 𝑓𝜋′
𝐴,𝐶 for objects 𝐵 and arrows

𝑓 ∶ 𝐶 → 𝐵.

5. Check that 𝐻𝐴 is a Cartesian functor.

6. Assume that 𝐻𝐴 enjoys the same universality property of 𝐻𝑥 with 𝜋𝐴,1 as the undetermined 𝑥.
Prove that A[𝑥] is isomorphic to A𝐴. (Even if you know nothing about polynomial categories and
monads, you should be able to prove this just by exploiting universality.)

Bonus (prove that 𝐻𝐴 has indeeded the assumed universality property). Let 𝐹 ∶ A→ Bdenote a Carte-
sian functor and 𝑦 ∶ 1 → 𝐹 (𝐴) a given arrow in B. We show constructively the existence of a unique
Cartesian functor𝐹 ′ ∶ A𝐴 → B that satisfies the desired properties, that is𝐹 ′𝐻𝐴 = 𝐹 and𝐹 ′(𝜋𝐴,𝑎) = 𝑦.
Let 𝐹 ′ be defined on objects and arrows as 𝐹 ′(𝐵) = 𝐹𝐵 and 𝐹 ′(𝑓 ) = 𝐹 (𝑓 )⟨𝑦𝐹 (𝐵)∙, 1𝐹 (𝐵)⟩, where
𝐹 (𝐵)∙ ∶ 𝐹 (𝐵) → 1.

7a. Check that 𝐹 ′ is Cartesian.

7b. Check that it satisfies the desired properties.

7c. Prove uniqueness.

2



2 Deduction Theorem

The standard (and simpler) form of the deduction theorem asserts that if 𝐴∧𝐵 → 𝐶 then 𝐴 → (𝐶 ⇐ 𝐵)
(you probably already encountered a similar statement where arrows are denoted by ⊢, reads “entails”).
However, as soon as one adjoins an assumption 𝑥 ∶ 𝐓 → 𝐴 (that is a proof 𝑥 for the formula 𝐴), one
obtains a new deductive system D(𝑥) on which we stated the general form of the deduction theorem. In
what follows, you will be guided to prove the theorem for positive intuitionistic propositional calculus.
(This is a very general scheme for many proofs in formal languages and abstract algebras.)

1. You may (or may not!) have noticed a circular argument in introducing the ‘if’ operator ⇐ since
we also used a sort of ‘if ... then ... ’ construction (via the inference rule) to introduce ⇐. (This is
sometimes called the Zeno paradox of logic). How did we solve this issue?

2. What are the (three) primitive operators on proofs in D(𝑥)?

3. Let 𝜑(𝑥) denote a proof 𝐵 → 𝐶 in D(𝑥) where 𝑥 ∶ 𝐓 → 𝐴. Deconstruct 𝜑(𝑥) using pairing and
do the same for transposition. (Bonus: make explicit the five possible forms for 𝜑(𝑥)).

4. For pairing and transposition, construct an explicit proof 𝑓 (𝑥) ∶ 𝐴 ∧𝐵 → 𝐶 . Here is an example:
if 𝑝 ∶ 𝐵 → 𝐶 is a proof in D (which is therefore independent from 𝑥), then 𝑓 = 𝑝◦𝜋′

𝐴,𝐵 (which
is also independent from 𝑥). We can also write 𝑓 using the 𝜆-abstraction 𝜆𝑥∶𝐴𝑝. Feel free to use
similar notations.

5. Observe that 𝑓 (𝑥), through the primitive operators, deconstructs 𝜑(𝑥) into shorter proofs. We
can make this intuition precise by defining an inductive notion of length on proofs: for instance if
𝑝 ∶ 𝐵 → 𝐶 exists already in D, then 𝜑(𝑥) has length 0 (the constant polynomial). What is the
length of a proof pairing two proofs of lengths 𝑛, 𝑚 ≥ 0?

6. Sketch a proof by induction for the deduction theorem (in D(𝑥)) (outline the main steps based on
your previous answers).

7. Bonus: What is the missing ingredient in order to state functional completeness in the correspond-
ing Cartesian closed category of D(𝑥)?

3



3 Church’s Numerals

Recall that the untyped 𝜆-calculus is defined inductively by 𝑡 ∶∶= 𝑥 ∣ 𝑡 ≀ 𝑡′ ∣ 𝜆𝑥.𝑡. For simplicity, we will
use concatenation to encode ≀, so that we write 𝑡𝑡′ for 𝑡 ≀ 𝑡′. Church defined some sort of natural numbers,
called numerals, using the untyped 𝜆-calculus as follows. First, he introduced the operator ⋆ on 𝜆-terms
𝑡 ⋆ 𝑡′ ∶= 𝜆𝑥.(𝑡(𝑡′𝑥)) .. Then, he went on defining

0 ∶= 𝜆𝑥.(𝜆𝑥.𝑥), 1 ∶= 𝜆𝑥.𝑥, 2 ∶= 𝜆𝑥.(𝑥 ⋆ 𝑥),…

so that 1𝑓 = 𝑓 , 2𝑓 = 𝑓 ⋆ 𝑓 , etc. as if a numeral 𝑛 encodes the process of applying the ⋆ operator 𝑛
times to its argument 𝑓 .

1. What is 0𝑓? Is it expected? Comment.

2. What does the ⋆ operator encode as a standard operation on natural numbers?

3. What does 𝜆𝑥(𝑥 ⋆ (𝑛𝑥)) represent for a numeral 𝑛? (Hint: think of the basic ingredients you need
to define a natural number object).

4. How can you encode exponentiation of natural numbers?

5. Bonus: Write the sum of two numerals as a 𝜆-term.

So you might think that, since numerals behave like natural numbers, there is a built-in ‘type’ (precisely
the one for natural numbers) that comes for free in an untyped 𝜆-calculus... let’s push this further yet
before concluding.

1. Suppose that 𝑥 has type 𝐴 in the definition of ⋆, what would be the type of 𝑛 and 𝑚 in 𝑛 ⋆ 𝑚?

2. Is this type coherent with the product of two numerals? What about exponentiation of numerals?

3. State under which extra condition on the type 𝐴 all numerals would have the same type. (So after
all, numerals aren’t really natural numbers...)

4


