
Exam 2020-2021 (Ingredients and Recipes)
Khalil Ghorbal
November 2020

Appetizer

1. What are the subcategories of a group? Which are full? (go easy, don’t bite your tongue!)
2. Consistency implies that the set of all sets cannot be a set. Why then are we allowed to talk,

shamelessly, about the category of all categories?

1 Recipe

1. Nothing says in the definition of a subcategory that the structure of a group must be preserved!
Thus subgroups are not the only subcategories. Submonoids, however, check all the requirements of a
subcategory since their arrows (by definition) are closed by composition. Here we have only one object,
so for the submonoid to be full it has to account for all arrows and therefore the only possible non-trivial
full subcategory if the entire group. Of course, the empty category is trivially a full subcategory of any
category (there is no work to be done!).

2. This is perhaps more a philosophical question than a (pure) mathematical or computer science ques-
tion. I didn’t expect a precise answer for such an open (and rabbit-hole like question) anyway.

The first reaction you should have by now though is that one cannot formulate in a straightforward
way Russel’s paradox for categories for two main reasons. The first is that there is no global binary
operator ∈ in category theory. In a sense the relations are all local. You don’t have enough power to
talk upfront about arrows or objects far apart unless you dig up some structure that allows you to do
so. The second reason is that category theory is typed: there are objects, arrows, functors, etc., and the
stated relations must respect these types. This comes hard-encoded by the fact that each arrow has a
fixed domain and codomain. Nothing is floating around freely. In other words, the theory doesn’t bother
studying objects in isolation for it considers that the meaning of something (object or arrow or whatever)
depends on where that thing lives and what relations it has with its surroundings.

This being said, once we work out the list of properties that sets must have, it is comforting to check
that the category of all small categories is not small itself, and the category of all locally small categories
is neither small nor locally small. In particular, the category Set is not an object of itself, that is, it is
not a set. Said differently, it is not because one can define and talk about the category of all categories
that such a construction has the same nature (ore more precisely size) of its objects or arrows; it is often
larger as a matter of fact.

We can give a better (more precise) answer, but for that we need to dive a bit deeper into universes
and topoi . . .Does this mean that category theory is free of paradoxes (consistent)? Absolutely not! No
body knows. And even if it happens to be so, Gödel torpedo applies, it won’t be provable within the
theory itself, and one has to drop completeness.
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Main course

Let Adenote a locally small category (that is A(A,B) is a set for any A,B objects of A). Fix an object
A in Aand letHA ∶ A→ Set be defined as:

• for any object B,HA(B) = A(A,B), and
• for any arrow f ∶ B → B′,HA(f ) ∶ A(A,B) → A(A,B′) sends p ∶ A→ B to f◦p ∶ A→ B′

1. Check thatHA is a functor.
2. When A is Set, show that for any set B, H1(B) ≅ B naturally in B (1 being the usual terminal

object of Set).
Notation: The functor HA can be defined over any locally small category, there is nothing special

about A except being locally small. For instance if F ∶ A → B is a functor between two locally
small categories, thenHF (A) will denote the same construction except that now it is seen as an object of
[B,Set].

Let A B
F
⟂
G

be locally small categories (notice that F is left adjoint to G).

3. Show that HA◦G ≅ HF (A) as objects of the functor category [B,Set] (recall that arrows of a
functor category are natural transformations).

4. Deduce that any set-valued functor G ∶ A→ Set with a left adjoint is isomorphic toHA for some
A in A.

2 Recipe

Many identities used here for the pairing and product of arrows are detailed in the appendix “Drinks”
at the very end. Check it out from now and then to hydrate yourself while enjoying your meal.

1. We need to check thatHA(g◦f ) = HA(g)◦HA(f ) for any A f
←←←←←←←→ B and B g

←←←←←←→ C , and thatHA(1B) =
1HA(B) for any B object of A. In the category Set, we know that functions are entirely determined by
their action on the elements of their domain (that is maps with domain 1). Thus, by extensionality, we can
show that the identity function over a set S is exactly the function satisfying 1S◦s = s for any s ∶ 1 → S.
Given this fact, together with the identity laws of a category, one proves that HA(1B) is (extensionally)
equal to 1HA(B). Indeed for all p in A(A,B)

HA(1B)(p) = 1B◦p = p = 1HA(B)(p).

To prove that HA distributes over composition, we again use extensionality as well as the associativity
axiom of the composition

HA(g◦f )(p) = (g◦f )◦p = g◦(f◦p) = HA(g)(f◦p) = HA(g)(HA(f )(p)) = (HA(g)◦HA(f ))(p).

2. We have two functorsH1 and 1Set and we need to make explicit a natural isomorphism �

Set Set
H1

1Set

�
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Recall that function sets exist in Set for any two sets. They come equipped with an evaluation mapping
satisfying a universality property (this is an axiom!). In particular, the function set A(1, B) comes to-
gether with a function "B ∶ A(1, B) × 1 → B such that, for each X and q ∶ X × 1 → B, there exists a
unique function q̄ ∶ X → A(1, B) making the following diagram commute (11 denotes the identity on
the terminal object 1)

X × 1

A(1, B) × 1 B

q̄×11
q

"B

(1)

Recall that product on arrows is different from pairing. Indeed, the product of arrows is induced by the
universality property of the product on objects:

q × 11 = ⟨q◦�X,1, 11◦�′X,1⟩ = ⟨q◦�X,1, �
′
X,1⟩.

We instantiate diagram (1) with 1 as X and b◦�′1,1 as q where b ∶ 1 → B. By universality, there
exists a unique function b∗ ∶ 1 → A(1, B) making the following diagram commute

1 × 1 1

A(1, B) × 1 B

�′1,1

b◦�′1,1b∗×11 b

"B

(2)

where we used the more standard notation b∗ instead of b◦�′1,1 (b∗ is called the name of b by Lawvere).
Since 1 × 1

�′1,1
←←←←←←←←←←←←←←←←←→ 1 is an isomorphism (the inverse arrow is ⟨11, 11⟩), it follows that b and b∗ are in

one-to-one correspondence: each element b of B has a corresponding function b∗ in A(1, B), and
"B◦⟨b

∗, 11⟩ = "B◦(b∗ × 11)◦⟨11, 11⟩ = b◦�′1,1◦⟨11, 11⟩ = b◦11 = b

Let �B ∶ A(1, B) → B denote such an isomorphism. That is, for each b∗ ∶ 1 → A(1, B)

�B(b∗) = �B◦b
∗ = "B◦⟨b

∗, 11⟩ = b

It remains to show the naturality condition

A(1, B) A(1, B′)

B B′

H1(f )

�B �B′

f

We prove �B′◦H1(f ) = f◦�B by showing that the equality holds for each element of A(1, B), that
is for each map b∗ ∶ 1 → A(1, B). Notice that, with respect to these definitions, H1(f ) maps the name
of b to the name of f◦b, in other words, formallyH1(f )◦b∗ = (f◦b)∗:

�B′◦H1(f )◦b∗ = �B′◦(f◦b)∗

= "B′◦⟨(f◦b)∗, 11⟩
= f◦b
= f◦�B◦b

∗

By extensionality, �B′◦H1(f ) = f◦�B which proves the naturality in B.
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3. For each B in B, we are looking for an isomorphism (HA◦G)(B) ≅ (HF (A))(B) natural in B. By
definition, (HA◦G)(B) = A(A,G(B)) and (HF (A))(B) = B(F (A), B). Since F is left adjoint to G,
we are already provided such an isomorphism. It remains to check the naturality in B, that is that the
following diagram commutes for some q ∶ B → B′ in B

A(A,G(B)) A(A,G(B′))

B(F (A), B) B(F (A), B′)

HA(G(q))

HF (A)(q)

We prove this by extentionality (The diagram is in Set). Let f be an element of A(A,G(B)). We want
to show that

G(q)◦f = q◦f

which is provided by the very naturality axioms of adjoints.

4. To prove thatH1◦G ≅ G as objects in [A,Set], we need to prove that,
(H1◦G)(A) ≅ G(A) naturally in A

From (2.) we get the desired equivalence, namely
(H1◦G)(A) = H1(G(A)) ≅ G(A).

From (3.) with A = 1, we get that G ≅ H1◦G ≅ HF (1).

Desert

1. Prove that the identities defined on a Kleisli category are identities and that the composition as
defined is indeed associative.

2. Detail the proofs of the two derived rules (or operators on proofs) of positive intuitionistic logic
f ∗ and f∗ (slide 16).

3. Prove that (f∗)∗ = (f ∗)∗ = f where f ∶ A→ B and A and B are formulas.

3 Recipe

1. We need to check that for any arrow f ∶ A↠ B,
�B◦Kf = f = f◦K�A

where �A ∶ A→ TA, �B ∶ B → TB, and ◦K denotes the composition inKleisli categories (to distinguish
it from the original composition). The two equalities can be read from the following commuting diagrams
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(both �B◦Kf and f◦K�A are colored in red)
TTB

TA TB

A A

�B
Tf

�A
f

1A

TTB

TB TB

A B

�B
T �B

1TB
f

�B

It remains to prove associativity. We want to show (ℎ◦Kg)◦Kf = ℎ◦K (g◦Kf ). In the following diagram
ℎ◦Kg is dashed in red and g◦Kf is dashed in blue (the diagram commutes by definition of ◦K ):

TTC TTD

TB TC TD

A B C

�C �DT g Tℎ

f g ℎ

We next draw (ℎ◦Kg)◦Kf (left) and ℎ◦K (g◦Kf ) (right)
TTC TTD

TB TC TD

A B C

�DT (ℎ◦Kg)

f g ℎ

TTC TTD

TB TC TD

A B C

�C �DT g Tℎ

g◦Kf ℎ

and both paths amount in fact to the “canonical” ℎ◦Kg◦Kf depicted below on the same diagram
TTC TTD

TB TC TD

A B C

�C �DT g Tℎ

f g ℎ

2.
T ∧ A

�′T,A
←←←←←←←←←←←←←←←←←←←→ A A

f
←←←←←←←→ B

T ∧ A
f◦�′T,A
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ B

T
f◦�′T,A
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ B ⇐ A

A
A∙
←←←←←←←←←←→ T T

g
←←←←←←→ B ⇐ A

A
g◦A∙
←←←←←←←←←←←←←←←←←←→ B ⇐ A A

1A
←←←←←←←←←←→ A

A
⟨g◦A∙,1A⟩
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (B ⇐ A) ∧ A (B ⇐ A) ∧ A

"B,A
←←←←←←←←←←←←←←←←→ B

A
"B,A◦⟨g◦A∙,1A⟩
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ B
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3. Let f ∶ A→ B and g ∶ 1 → BA be arrows and objects in a cartesian closed category (‘1’ being the
product of zero elements or the terminal object of the category). We have

(f ∗)∗ = "B,A◦⟨f
∗◦A∙, 1A⟩◦1A

= "B,A◦⟨f
∗◦A∙, 1A⟩◦�′1,A◦⟨A∙, 1A⟩

= "B,A◦⟨f
∗◦�1,A, �

′
1,A⟩◦⟨A∙, 1A⟩

= "B,A◦(f ∗ × 1A)◦⟨A∙, 1A⟩
= f

where the last equation can be seen diagramatically (notice that �′1,A is an isomorphism and its inverse
is ⟨A∙, 1A⟩).

1 × A A

BA × A B

�′1,A

f◦�′1,Af ∗×1A f

"B,A

This diagram is in fact the general case of diagram (2). For the remaining equation, we also have
(g∗)∗ = g∗◦�′1,A

= "B,A◦⟨g◦A∙, 1A⟩◦�′1,A
= "B,A◦⟨g◦�1,A, �′1,A⟩

= "B,A◦g × 1A
= g

The last equation comes from the uniqueness of the arrow 1 → BA that makes the following diagram
commute

1 × A

BA × A B

g×1A
"B,A◦g×1A

"B,A
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A Drinks

A.1 Universality of the product

The universality property of the product is much richer than it appears at the first sight. Below we state
some important identities. For any arrows and objects C f

←←←←←←←→ A, C g
←←←←←←→ B, and D ℎ

←←←←←←→ C in a cartesian
category, denoting the unique map C → A × B by ⟨f, g⟩, one has:

1. ⟨f, g⟩◦ℎ = ⟨f◦ℎ, g◦ℎ⟩,
2. �A,B◦⟨f, g⟩ = f and �′A,B◦⟨f, g⟩ = g

3. ⟨�A,B, �′A,B⟩ = 1A×B

C

A × B

A B

f
⟨f,g⟩

g

�A,B �′A,B

D

C

A × B

A B

f◦ℎ

ℎ

g◦ℎ

f

⟨f,g⟩

g

�A,B �′A,B

A.2 Some isomorphisms

In any cartesian category A, one has A × 1 ≅ A for any object A of A. The isomorphism is as follows

A × 1 A
�A,1

⟨1A,A∙⟩
where A

A∙
←←←←←←←←←←→ 1 (1 is terminal, so A∙ exists and is unique).

According to the identities above, one has
�A,1◦⟨1A, A∙⟩ = 1A.

Since 1 is terminal, one also has

A × 1
(A×1)∙ =�′A,1 = (A∙)◦�A,1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 1.

Thus (the first and last equalities comes from the first and last identities above)
⟨1A, A∙⟩◦�A,1 = ⟨1A◦�A,1, (A∙)◦�A,1⟩ = ⟨�A,1, �

′
A,1⟩ = 1A×1.
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