Exam 2020-2021

Khalil Ghorbal

November 2020

Appetizer

- 1. What are the subcategories of a group? Which are full? (go easy, don't bite your tongue!)
- 2. Consistency implies that the set of all sets cannot be a set. Why then are we allowed to talk, shamelessly, about *the category* of all categories?

Main course

Let \mathcal{A} denote a locally small category (that is $\mathcal{A}(A, B)$ is a set for any A, B objects of \mathcal{A}). Fix an object A in \mathcal{A} and let $H^A : \mathcal{A} \to \mathbf{Set}$ be define as:

- for any object B, $H^A(B) = \mathcal{A}(A, B)$, and
- for any arrow $f : B \to B', H^A(f) : \mathcal{A}(A, B) \to \mathcal{A}(A, B')$ sends $p : A \to B$ to $f \circ p : A \to B'$
- 1. Check that H^A is a functor.
- 2. When \mathcal{A} is **Set**, show that for any set B, $H^1(B) \cong B$ naturally in B (1 being the usual terminal object of **Set**).

<u>Notation</u>: The functor H^A can be defined over any locally small category, there is nothing special about \mathcal{A} except being locally small. For instance if $F : \mathcal{A} \to \mathcal{B}$ is a functor between two locally small categories, then $H^{F(A)}$ will denote the same construction except that now it is seen as an object of $[\mathcal{B}, \mathbf{Set}]$.

- Let $\mathscr{A} \xrightarrow{F} \mathscr{B}$ be locally small categories (notice that *F* is left adjoint to *G*).
- 3. Show that $H^A \circ G \cong H^{F(A)}$ as objects of the functor category [\mathfrak{B} , **Set**] (recall that arrows of a functor category are natural transformations).
- 4. Deduce that any set-valued functor $G : \mathcal{A} \to \mathbf{Set}$ with a left adjoint is isomorphic to H^A for some A in \mathcal{A} .

Desert

- 1. Prove that the identities defined on a Kleisli category are identities and that the composition as defined is indeed associative.
- 2. Detail the proofs of the two derived rules (or operators on proofs) of positive intuitionistic logic f^* and f_* (slide 16).
- 3. Prove that $(f_*)^* = (f^*)_* = f$ where $f : A \to B$ and A and B are formulas.