TD2

Khalil Ghorbal

Natural transformations

Exercise 1 Let 2 be the discrete category with two objects. Prove that the functor category $[2, \mathcal{B}]$ is isomorphic to the product category $\mathcal{B} \times \mathcal{B}$. (The notation \mathcal{B}^2 for $[2, \mathcal{B}]$ is now justified.)

Exercise 2 A permutation of a set X is a bijection $X \to X$. Let Sym(X) denote the set of permutations of X. A total order on a set X is an order \leq such that for all $x, y \in X$, either $x \leq y$ or $y \leq x$. So a total order amounts to a way to placing the elements of X in a sequence. Let Ord(X) denote the set of total orders of X. Let \mathcal{A} denote the category of finite sets and bijections.

- (a) There is a canonical way to regard both Sym and Ord as functors from A to the category of sets Set. Make it explicit.
- (b) Show that there is no natural transformation $Sym \rightarrow Ord$.
- (c) For an *n*-element set X, how many elements do the sets Sym(X) and Ord(X) have?

Conclude that $Sym(X) \cong Ord(X)$ but no naturally for all $X \in \mathcal{A}$. (This is an example where maps in \mathcal{A} are isomorphic in the standard sense with no natural way to match them up.)

Adjoints

Recall that an object I in a category \mathcal{A} is *initial* if for every $A \in \mathcal{A}$, there exists a unique map $I \to A$. An object $T \in \mathcal{A}$ is *terminal* if for every $A \in \mathcal{A}$, there exists a unique maps $A \to T$. The terminal object of **Cat** is the category 1 (with one object and the identity on it).

Exercise 1 Initial and terminal objects can be described as adjoints. Think about this and try to make it explicit.

Exercise 2 Show that left adjoints preserve initial objects: that is, if $\mathscr{A} \xleftarrow{F}_{G} \mathscr{B}$ are categories and functors with $F \dashv G$, and I is an initial object of \mathscr{A} , then F(I) is an initial object of \mathscr{B} . Dually, show that right adjoints preserve terminal objects.

Exercise 3 Given an adjunction $F \dashv G$ with unit η and counit ε , prove that the following triangles commute.

Exercise 4 Let $A \xleftarrow{f}{g} B$ be order-preserving maps between ordered sets. Prove that the following conditions are equivalent (using adjoints!):

- (a) for all $a \in A$ and $b \in B$, $f(a) \le b \iff a \le g(b)$
- (b) $a \leq g(f(a))$ for all $a \in A$ and $f(g(b)) \leq b$ for all $b \in B$.