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(artesian closed categories



» Product

Let of be a category and A,Bc d. A of Aand B
consists of an object P and maps , ' called

Ac™ p-",B

such that for all triples (X, f, g) satisfying

At x_%,8B

there is a unique map p : X — P making the following
diagram commute
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» Product Remarks

Pis often denoted by A x B

p is denoted by (f, g)

Products do not always exist!

When a product exists, it induces a product-like
operation on arrows f x g:= (fom, go7’) with

Ax B
A fxg B
e | N

C—"F——CxD— D

One can make sense of the product of zero elements. It
is a terminal object! denoted 1 for convenience.
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» (artesian category

A category o is if it has finite products (including
the product of zero elements 1). That is for every A, B € d,
the product A x B exists.
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» (artesian closed category

Let of be a cartesian category. For every object B € o, we
define a functor — x B : ol — 9l mapping object Ato A x B,
and

At o axg el 4y B

(artesian closed category

A category d is if it is cartesian
and for each B € ¢, the functor — x B: ol — d has
a right adjoint.

We write the right adjoint as (—)5, and, for C € 4,
call C8 an :

So cartesian closed categories are those categories with
products and exponentials.
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» Important correspondences

In any cartesian closed category o, and A, B, C € o, by
definition of adjunctions

(A x B,C) = sd(A, CP)

that is arrows A x B — C are in one-to-one correspondence
with arrows A — CB. We called such operation a
transposition and denoted it by a bar in both directions.
We can also prove (A = 1)

(B, C) = d(1,CB)

so that to each B % C corresponds 1 25 €8 and to each

f fx1
1 < CB corresponds B =<5, C.
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» Higher-order arithmetic Looks familiar?

In any cartesian category A, and A,B,C € d
Ax1=2A AxB=BxA (AxB)xC=ZAx(BxC)
In any cartesian closed category o, and A,B,C € o

At~ A 1721, (AxB)CS~ACx B¢, ABXCx~ (AC)B
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» A category of cartesian closed categories

A F: 9 — A is a functor that preserves
the cartesian closed structure

F(A x B) = F(A) x F(B)
F(ma,8) = TFA),FB)
F(AB) = F(A)F®)
F((f,g)) = (F(f), F(g))

This defines a category Cart of cartesian closed categories.
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» Monad
A on a category o is a triple (T, 7, u) where T: d — o

1g
. . . . /_N
is a functor equipped with a unit o \Qn) o

ToT
T
and a multiplication o noodA
\T%
satisfying the associativity and unit laws. That is such that

the following diagrams commute:

ToToT —, ToT T, 1o y N A
w1] J» N L N L
ToT ——— T T T

Every adjunction defines a monad!
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» Kleisli category

The sdrof amonad (T,n, ) on od is a
category with

the same objects as o

with morphisms A — B whenever A — TBis a morphism

ind
The identity arrow 1, : A — Ais definedasn, : A — TA.
Two morphisms f: A— Band g: B — C are composed as
pcoTgof:

TC

A Luc
B TC
g
A
A B
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» Natural numbers objects

A (or system) in a cartesian closed
category d is an object N and two maps

153NS N

satisfying the following universal property: for any diagram
1445 A

there is a unique arrow N 5 A such that ho0 = aand

hos = fo h. That is such the following diagram commutes

1 -2 NS5 N

! !
\ | h | h
a $ J

A—f A

Drop uniqueness of h to get weak natural numbers object.
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Deductive systems



» Deductive system

A is a category without the associativity
and identity laws axioms.

objects are called
arrows are called
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» Conjunction calculus

A

is a deductive system with

a formula T (called “true”) such that there is an arrow
Ae : A — T for each object (a terminal-like object ... but
we don’t have a category)

a binary operation ‘A’ between formulas (called
conJunctlon ’) together with two arrows A A B 25 A

and A/ B 2% B inducing a pairing of arrows with the
same domain often presented as an inference rule

cha c4s
c 9 AnB

(a product-like construction)
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» Proof calculus

proving means constructing new proofs (arrows) from a
formula (assumption) to another formula (result)

For instance, in conjunction calculus, A is commutative and
associative (the labels on arrows are the proofs)

(' 4,8, A,B)
—_——

AANB BANA

(AAB)AC 255 AN (BAC) where
aap.c = (TaB© TanB,C, (T AB O TANB,C, T ANB,C))
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» Proof calculus

Inference rules define a calculus over proofs: for instance
conjunction of formulas (A) induces an operation over
arrows (pairing).

Other operations on proofs can be defined out of known ones
(derived rules).

For instance
AfB c4p

(foma,c,gom’ a,c)

ANC
defines a “conjunction” on proofs:

BAD

fA g .= <fO TAC, 9O 7TIA,C>
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» Positive intuitionistic propositional calculus

A is a
conjunction calculus with an additional binary operation
between formulas

a binary operation ‘<=’ between formulas (called “if”)

together with an arrow (A < B) A B 2% A inducing the
following transposition on arrows:

cABl A
chacs
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» Associated proof calculus
One derives two operations on proofs

AL B

fOW’\,A

I——=BA

T4 B<=A
€B7AO<gOAO,1A)
—

A B

We denote

fo:="fonra g =cpao(goAe, l,)

f. is called the of £.
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» Deduction theorem

Given a positive intuitionistic calculus &, assuming
the proof T % A, one gets a new positive
intuitionistic calculus & (x) with the same formulas
as & and where the proofs, called , are
freely generated using the induced operators on
proofs (inference and derived rules), like (—, —), A,
(=) and ().

Deduction theorem on proofs

With every proof B £, Cin P (x) from the
assumptionT % A, there exists an associated proof

AABL CinDnot depending on x.
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» Other deduction systems

One can go further and define

intuitionistic propositional calculus (adding falsehood
and disjunction)

classical propositional calculus (adding the excluded
middle)
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» Deduction systems as categories

We can fully recover a category structure from a deduction
system by adding back the missing axioms as equivalence
relations between proofs.

More precisely, the equality between proofs is decided
modulo the following identities

fol, = f, for any object A and arrow f with domain A
14 o f = f, for any object A and arrow f with codomain A
(fog)oh=fo(go h), for any composable arrows f, g, h
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» Conjunction calculus as cartesian category

Conjunction calculus can be regarded as a cartesian
category by restricting further the equality between proofs
modulo the following identities:

f= Ae, forany A A7 (now T becomes a terminal object)

foralcth A c%B chanB
7TA,BO<f,9>:f

m'ago(fg) =g
<7TA_’BOh,7T/A730h> = h

This turns the conjunction into a product
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» Positive intuitionistic calculus as cartesian closed category

We restrict further the equalities between proofs modulo
the following identities:

forallcAB Aandc X A <=B

eaglhomcp, mcg) =h

eapo(komcp, m'cp) =k
These identities make the “if” binary operation ‘<’ into an

exponential, so B < A defines B4 which satisfies all the
properties of a (right) adjunction for the product functor.
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» Polynomial category

Let of denote the cartesian closed category obtained from a
positive intuitionistic calculus 9.

The d[x] is defined as the cartesian
closed category obtained from the associated positive
intuitionistic calculus @ (x) assuming T % A.

Remark: The category di[x] is isomorphic to a Kleisli
category.
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» A deduction theorem over categories

For any polynomial ¢(x) : B— Cin d[x] there is a
unique arrow f: A x B— Cin d such that

fo (xo Be,1g) = ¢(x). (The equality here is between
equivalence classes by construction of of and o [x].)

This says that polynomials have very special canonical form,
very much like ag + a1 X + ao X?> + - - - is the canonical form of
univariate polynomials over a ring of coefficients.

(NB: nothing says that the arrow fis simple!)
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» Functional completeness

For any polynomial ¢(x) : T — B in s[x], where
x:T— Ais an assumption in of, there is a unique
arrow f: T — BAin o such that eg 4 o (£, x) = p(x)
(again the equality is over equivalence classes).
We denote fby A\y.ap(X).

Yes, this will be the )\ abstraction in the typed \-calculus.
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M-calculus



» Untyped A-calculus Combinatory logic

The is a formal language. Its words, called
are defined inductively

tu=x| it | A\t

where the (total) binary operator, called and
the binder ) (over variables), called satisfy
the following axioms:
(Ax-¢(x)) L a = ¢(a), whenever no free occurrence in a
becomes bound in ¢(a); we say x is by a, or a
is for x.

Ax-(f1x) = f, whenever fis independent from x (i.e. if x
occurs in fit must be bound).

A term is if it contains no free variables.
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» a-renaming Equivalence relation

Terms are considered equal up to renaming their bound
variables.

This defines a congruence relation (equality over
equivalence classes).

Forinstance \x.y = A\;.y # A\y.y
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» Typed A-calculus

A is a formal language consisting of
a class of types
a class of terms for each type

The class of types
has some basic types (like T, or N for natural numbers)

is closed under products and exponentials: for any types
Aand B, A x B and B are also types.

The class of terms is freely generated
from variables of certain types
term forming operations: pairing (—, —), projections
m, 7', evaluation 4 g, and A\-abstraction
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» Translations

A is a morphism over A-calculi ¢ : £ — £’:
®(A) is a type of £’ for any type A of £
6(1) = 1, 6(A x B) = 6(A) x 4(B) etc.
foreveryarrowa:1 — Ain<, ¢(a): 1 — ¢(A)in &’
if ais closed, then ¢(a) is closed

This defines a category A-Calc of A\-calculi.
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» Internal language of cartesian closed categories

Let of denote a cartesian closed categories.
The L(d) of o is defined by

types are the formulas of

terms of type A are polynomial expressions p(x) : 1 — A
in the polynomial category s1[x] where x: 1 — B (typed
variables).

Notice that the domain for terms is the terminal object
1. Thus any arrow in the polynomial category is not a
term, but its name is (cf. slide 14).

(We need a natural numbers object to have multiple
variables.)

Terms are “ordinary elements” of types.
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» Curry-Howard-LambeR isomorphism

The internal language construction defines a functor
L :Cart — X\-Calc

We can also generate a cartesian closed category from a
A-calculus. This defines a functor C :A\-Calc — Cart

Curry-Howard-LambeR isomorphism
A-Calc = Cart

(The equivalence still stand if one adds a (weak) natural number
object in both the language and the cartesian closed category.)
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» This is only the big bang

You have already seen a lot up to this point.

But that’s just the beginning!

The construction of 91[x] using Kleisli categories
Monads and algebraic theories

reduction and bounded (strongly normalizing) A\-terms
(coherence problem)

C-monoidal categories and untyped \-calculus

To be continued ...
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