Formulas as Types

by Khalil Ghorbal (Inria, France) on December 20, 2023 Cartesian closed categories

Deductive systems

 λ -calculus

» Product

Let \mathcal{A} be a category and $A, B \in \mathcal{A}$. A product of A and B consists of an object P and maps π , π' called projections

$$A \xleftarrow{\pi} P \xrightarrow{\pi'} B$$

such that for all triples (X, f, g) satisfying

$$A \xleftarrow{f} X \xrightarrow{g} B$$

there is a unique map $p: X \to P$ making the following diagram commute

Remarks

- » Product
 - * *P* is often denoted by $A \times B$
 - * p is denoted by $\langle f, g \rangle$
 - * Products do not always exist!
 - * When a product exists, it induces a product-like operation on arrows $f \times g := \langle f \circ \pi, g \circ \pi' \rangle$ with

* One can make sense of the product of zero elements. It is a terminal object! denoted 1 for convenience.

Cartesian closed categories

Deductive systems

 λ -calculus

» Cartesian category

A category \mathcal{A} is cartesian if it has finite products (including the product of zero elements 1). That is for every $A, B \in \mathcal{A}$, the product $A \times B$ exists.

» Cartesian closed category

Let \mathcal{A} be a cartesian category. For every object $B \in \mathcal{A}$, we define a functor $- \times B : \mathcal{A} \to \mathcal{A}$ mapping object A to $A \times B$, and

$$A \xrightarrow{f} A' \quad \mapsto \quad A \times B \xrightarrow{\langle f \circ \pi, 1_B \circ \pi' \rangle} A' \times B$$

Cartesian closed category

A category \mathcal{A} is cartesian closed if it is cartesian and for each $B \in \mathcal{A}$, the functor $- \times B : \mathcal{A} \to \mathcal{A}$ has a right adjoint. We write the right adjoint as $(-)^B$, and, for $C \in \mathcal{A}$, call C^B an exponential.

So cartesian closed categories are those categories with products and exponentials.

» Important correspondences

In any cartesian closed category \mathcal{A} , and $A, B, C \in \mathcal{A}$, by definition of adjunctions

$$\mathscr{A}(A \times B, C) \cong \mathscr{A}(A, C^B)$$

that is arrows $A \times B \rightarrow C$ are in one-to-one correspondence with arrows $A \rightarrow C^B$. We called such operation a transposition and denoted it by a bar in both directions. We can also prove (A = 1)

$$\mathscr{A}(B,C)\cong\mathscr{A}(1,C^B)$$

so that to each $B \xrightarrow{g} C$ corresponds $1 \xrightarrow{\overline{g \circ \pi'}} C^B$ and to each $1 \xrightarrow{f} C^B$ corresponds $B \xrightarrow{\varepsilon_C \circ f \times 1_B} C$.

Deductive systems

$$\lambda$$
-calculus

» Higher-order arithmetic

Looks familiar?

In any cartesian category \mathcal{A} , and $A, B, C \in \mathcal{A}$

 $A \times 1 \cong A$, $A \times B \cong B \times A$, $(A \times B) \times C \cong A \times (B \times C)$

In any cartesian closed category \mathcal{A} , and $A, B, C \in \mathcal{A}$

 $A^1 \cong A, \quad 1^A \cong 1, \quad (A \times B)^C \cong A^C \times B^C, \quad A^{B \times C} \cong (A^C)^B$

* ...

» A category of cartesian closed categories

A cartesian functor $F : \mathcal{A} \to \mathcal{B}$ is a functor that preserves the cartesian closed structure

* $F(A \times B) = F(A) \times F(B)$

$$* F(\pi_{A,B}) = \pi_{F(A),F(B)}$$

$$* F(A^B) = F(A)^{F(B)}$$

*
$$F(\langle f, g \rangle) = \langle F(f), F(g) \rangle$$

This defines a category Cart of cartesian closed categories.

» Monad

A monad on a category \mathcal{A} is a triple (T, η, μ) where $T: \mathcal{A} \to \mathcal{A}$

is a functor equipped with a unit \mathscr{A} \mathfrak{A}

and a multiplication \mathscr{A}

satisfying the associativity and unit laws. That is such that the following diagrams commute:

Every adjunction defines a monad!

» Kleisli category

The Kleisli category \mathcal{A}_T of a monad (T,η,μ) on $\mathcal A$ is a category with

- * the same objects as ${\mathscr A}$
- * with morphisms $A \twoheadrightarrow B$ whenever $A \to TB$ is a morphism in \mathcal{A}

The identity arrow $1_A : A \twoheadrightarrow A$ is defined as $\eta_A : A \to TA$. Two morphisms $f : A \twoheadrightarrow B$ and $g : B \twoheadrightarrow C$ are composed as $\mu_C \circ Tg \circ f$:

» Natural numbers objects

A natural numbers object (or system) in a cartesian closed category \mathcal{A} is an object *N* and two maps

$$1 \xrightarrow{0} N \xrightarrow{s} N$$

satisfying the following universal property: for any diagram

$$1 \xrightarrow{a} A \xrightarrow{f} A$$

there is a unique arrow $N \xrightarrow{h} A$ such that $h \circ 0 = a$ and $h \circ s = f \circ h$. That is such the following diagram commutes

$$1 \xrightarrow{0} N \xrightarrow{s} N$$

$$a \xrightarrow{\downarrow} h \xrightarrow{f} A$$

Drop uniqueness of h to get weak natural numbers object.

Deductive systems

» Deductive system

A deductive system is a category without the associativity and identity laws axioms.

- * objects are called formulas
- * arrows are called proofs

» Conjunction calculus

A conjunction calculus is a deductive system with

- T a formula T (called "true") such that there is an arrow $A \bullet : A \rightarrow T$ for each object (a terminal-like object ... but we don't have a category)
- \land a binary operation ' \land ' between formulas (called "conjunction") together with two arrows $A \land B \xrightarrow{\pi_{A,B}} A$ and $A \land B \xrightarrow{\pi'_{A,B}} B$ inducing a *pairing* of arrows with the same domain often presented as an inference rule

$$\frac{C \xrightarrow{f} A \quad C \xrightarrow{g} B}{C \xrightarrow{\langle f,g \rangle} A \land B}$$

(a product-like construction)

Deductive systems

» Proof calculus

proving means *constructing* new proofs (arrows) from a formula (assumption) to another formula (result)

For instance, in conjunction calculus, \land is commutative and associative (the labels on arrows <u>are</u> the proofs)

$$* A \land B \xrightarrow{\langle \pi'_{A,B}, \pi_{A,B} \rangle} B \land A$$

*
$$(A \land B) \land C \xrightarrow{\alpha_{A,B,C}} A \land (B \land C)$$
 where
 $\alpha_{A,B,C} = \langle \pi_{A,B} \circ \pi_{A \land B,C}, \langle \pi'_{A,B} \circ \pi_{A \land B,C}, \pi'_{A \land B,C} \rangle \rangle$

Deductive systems

» Proof calculus

Inference rules define a calculus over proofs: for instance conjunction of formulas (\land) induces an operation over arrows (pairing).

Other operations on proofs can be defined out of known ones (derived rules).

For instance

$$\frac{A \xrightarrow{f} B \quad C \xrightarrow{g} D}{A \land C \xrightarrow{\langle \text{fo}\pi_{A,C}, g \circ \pi'_{A,C} \rangle} B \land D}$$

defines a "conjunction" on proofs:

$$f \wedge g := \langle f \circ \pi_{A,C}, g \circ \pi'_{A,C}
angle$$

» Positive intuitionistic propositional calculus

A positive intuitionistic propositional calculus is a conjunction calculus with an additional binary operation between formulas

 $\leftarrow a \text{ binary operation `}\leftarrow` between formulas (called ``if") together with an arrow (<math>A \leftarrow B$) $\land B \xrightarrow{\varepsilon_{A,B}} A$ inducing the following *transposition* on arrows:

$$\frac{C \land B \xrightarrow{h} A}{C \xrightarrow{\overline{h}} A \Leftarrow B}$$

» Associated proof calculus

One derives two operations on proofs

$$\frac{A \xrightarrow{f} B}{\Box \xrightarrow{\overline{f} \circ \pi'_{\overline{1},A}}} B \Leftarrow A$$

$$\frac{\Box \xrightarrow{g} B \Leftarrow A}{A \xrightarrow{\varepsilon_{B,A} \circ \langle g \circ A \bullet, 1_A \rangle} B}$$

We denote

$$f_* := \overline{f \circ \pi'_{\intercal,A}} \qquad g^* := \varepsilon_{B,A} \circ \langle g \circ A \bullet, 1_A
angle$$

f_* is called the name of f.

Deductive systems

 λ -calculus

» Deduction theorem

Ring like construction

Given a positive intuitionistic calculus \mathfrak{D} , assuming the proof $\top \xrightarrow{x} A$, one gets a new positive intuitionistic calculus $\mathfrak{D}(x)$ with the same formulas as \mathfrak{D} and where the proofs, called polynomials, are freely generated using the induced operators on proofs (inference and derived rules), like $\langle -, - \rangle$, \wedge , $(-)^*$ and $(-)_*$

Deduction theorem on proofs

With every proof $B \xrightarrow{\varphi(x)} C$ in $\mathfrak{D}(x)$ from the assumption $T \xrightarrow{x} A$, there exists an associated proof $A \wedge B \xrightarrow{f} C$ in \mathfrak{D} not depending on x.

» Other deduction systems

One can go further and define

- intuitionistic propositional calculus (adding falsehood and disjunction)
- classical propositional calculus (adding the excluded middle)

» Deduction systems as categories

We can fully recover a category structure from a deduction system by adding back the missing axioms as equivalence relations between proofs.

More precisely, the equality between proofs is decided modulo the following identities

- * $f \circ 1_A = f$, for any object A and arrow f with domain A
- * $1_A \circ f = f$, for any object A and arrow f with codomain A
- $* \ (f \circ g) \circ h = f \circ (g \circ h)$, for any composable arrows f, g, h

» Conjunction calculus as cartesian category

Conjunction calculus can be regarded as a cartesian category by restricting further the equality between proofs modulo the following identities:

- * $f = A \bullet$, for any $A \xrightarrow{f} \uparrow$ (now \uparrow becomes a terminal object) * for all $C \xrightarrow{f} A$, $C \xrightarrow{g} B$, $C \xrightarrow{h} A \land B$ * $\pi_{A,B} \circ \langle f, g \rangle = f$ * $\pi'_{A,B} \circ \langle f, g \rangle = g$ * $\langle \pi_{A,B} \circ h, \pi'_{A,B} \circ h \rangle = h$
- * This turns the conjunction into a product

» Positive intuitionistic calculus as cartesian closed category

We restrict further the equalities between proofs modulo the following identities:

for all
$$C \land B \xrightarrow{h} A$$
 and $C \xrightarrow{k} A \Leftarrow B$
* $\varepsilon_{A,B} \langle \overline{h} \circ \pi_{C,B}, \pi'_{C,B} \rangle = h$

*
$$\overline{\varepsilon_{A,B} \circ \langle k \circ \pi_{C,B}, \pi'_{C,B} \rangle} = k$$

These identities make the "if" binary operation ' \Leftarrow ' into an exponential, so $B \Leftarrow A$ defines B^A which satisfies all the properties of a (right) adjunction for the product functor.

» Polynomial category

Let ${\mathscr A}$ denote the cartesian closed category obtained from a positive intuitionistic calculus ${\mathfrak D}.$

The polynomial category $\mathscr{A}[x]$ is defined as the cartesian closed category obtained from the associated positive intuitionistic calculus $\mathfrak{D}(x)$ assuming $\mathbb{T} \xrightarrow{x} A$.

Remark: The category $\mathcal{A}[x]$ is isomorphic to a Kleisli category.

» A deduction theorem over categories

For any polynomial $\varphi(x) : B \to C$ in $\mathscr{A}[x]$ there is a unique arrow $f : A \times B \to C$ in \mathscr{A} such that $f \circ \langle x \circ B \bullet, 1_B \rangle = \varphi(x)$. (The equality here is between equivalence classes by construction of \mathscr{A} and $\mathscr{A}[x]$.)

This says that polynomials have very special canonical form, very much like $a_0 + a_1X + a_2X^2 + \cdots$ is the canonical form of univariate polynomials over a ring of coefficients.

(NB: nothing says that the arrow *f* is simple!)

» Functional completeness

For any polynomial $\varphi(x) : \mathbb{T} \to B$ in $\mathscr{A}[x]$, where $x : \mathbb{T} \to A$ is an assumption in \mathscr{A} , there is a unique arrow $f : \mathbb{T} \to B^A$ in \mathscr{A} such that $\varepsilon_{B,A} \circ \langle f, x \rangle = \varphi(x)$ (again the equality is over equivalence classes). We denote f by $\lambda_{x:A}\varphi(x)$.

Yes, this will be the λ abstraction in the typed λ -calculus.

λ -calculus

» Untyped λ -calculus

Combinatory logic

The pure λ -calculus is a formal language. Its words, called λ -terms are defined inductively

 $t ::= x \mid t \wr t' \mid \lambda_x . t$

where the (total) binary operator λ , called application and the binder λ (over variables), called λ -abstraction satisfy the following axioms:

(β) $(\lambda_x.\varphi(x)) \wr a = \varphi(a)$, whenever no free occurrence in a becomes bound in $\varphi(a)$; we say x is substituted by a, or a is substitutable for x.

(η) $\lambda_x . (f \wr x) = f$, whenever f is independent from x (i.e. if x occurs in f it must be bound).

A term is closed if it contains no free variables.

Deductive systems

 λ -calculus

» lpha-renaming

Equivalence relation

Terms are considered equal up to renaming their bound variables. This defines a congruence relation (equality over equivalence classes). For instance $\lambda_x.y \equiv \lambda_z.y \neq \lambda_y.y$ » Typed $oldsymbol{\lambda}$ -calculus

A typed $\lambda\text{-calculus}$ is a formal language consisting of

- * a class of types
- * a class of terms for each type
- The class of types
 - * has some basic types (like ⊺, or *N* for natural numbers)
 - * is closed under products and exponentials: for any types A and B, $A \times B$ and B^A are also types.
- The class of terms is freely generated
 - * from variables of certain types
 - * term forming operations: pairing $\langle -, \rangle$, projections π, π' , evaluation $\varepsilon_{A,B}$, and λ -abstraction

» Translations

A translation is a morphism over λ -calculi $\phi : \mathscr{L} \to \mathscr{L}'$:

- $* \hspace{0.1 cm} \phi({\sf A}) \hspace{0.1 cm}$ is a type of ${\mathscr L}'$ for any type ${\sf A}$ of ${\mathscr L}$
- * $\phi(1) = 1$, $\phi(\mathbf{A} \times \mathbf{B}) = \phi(\mathbf{A}) \times \phi(\mathbf{B})$ etc.
- * for every arrow $a: 1 \to A$ in \mathcal{L} , $\phi(a): 1 \to \phi(A)$ in \mathcal{L}'
- * if *a* is closed, then $\phi(a)$ is closed

This defines a category λ -Calc of λ -calculi.

» Internal language of cartesian closed categories

Let \mathcal{A} denote a cartesian closed categories. The internal language $L(\mathcal{A})$ of \mathcal{A} is defined by

- * types are the formulas of ${\mathscr A}$
- * terms of type *A* are polynomial expressions $\varphi(x) : 1 \rightarrow A$ in the polynomial category $\mathscr{A}[x]$ where $x : 1 \rightarrow B$ (typed variables).

Notice that the domain for terms is the terminal object

1. Thus any arrow in the polynomial category is not a term, but its name is (cf. slide 14).

* (We need a natural numbers object to have multiple variables.)

Terms are "ordinary elements" of types.

» Curry-Howard-Lambek isomorphism

The internal language construction defines a functor

 $L: \mathsf{Cart} \to \lambda \mathsf{-Calc}$

We can also generate a cartesian closed category from a λ -calculus. This defines a functor $C : \lambda$ -Calc \rightarrow Cart

Curry-Howard-Lambek isomorphism

 λ -Calc \cong Cart

(The equivalence still stand if one adds a (weak) natural number object in both the language and the cartesian closed category.)

» This is only the big bang

You have already seen a lot up to this point.

But that's just the beginning!

- * The construction of $\mathscr{A}[x]$ using Kleisli categories
- Monads and algebraic theories
- * reduction and bounded (strongly normalizing) $\lambda\text{-terms}$ (coherence problem)
- * C-monoidal categories and untyped λ -calculus

* ...

To be continued ...

Cartesian closed categories

Deductive systems

» References

- * Joachim Lambek, Philip J. Scott. Introduction to Higher-Order Categorical Logic. 1986
- * Steve Awodey, Category Theory. 2009