Category Theory

Crash Course

by Khalil Ghorbal (Inria, France) on December 7, 2023

- » Category
- A category & consists of
 - * a collection of objects, $ob(\mathcal{A})$;
 - * for any two objects, $A, B \in ob(\mathcal{A})$, a collection of maps or arrows $\mathcal{A}(A, B)$ from A to B;
 - * for any three objects, A, B, C, a binary operator on maps called composition $\circ : \mathcal{A}(B, C) \times \mathcal{A}(A, B) \rightarrow \mathcal{A}(A, C)$;
- $* \;$ for each object A an identity map 1_A in $\mathcal{A}(A,A),$ satisfying the following axioms
 - * Associativity: for any $f \in \mathcal{A}(A, B)$, $g \in \mathcal{A}(B, C)$, $h \in \mathcal{A}(C, D)$, $(h \circ g) \circ f = h \circ (g \circ f)$,
 - * Identity Laws: for any $f \in \mathcal{A}(A, B)$, $f \circ 1_A = f = 1_B \circ f$.

Categories
000000

Natural Transformations

» Lingo

- * $f: A \longrightarrow B$ or $A \xrightarrow{f} B$ mean $f \in \mathcal{A}(A, B)$
- * A is called the domain of f
- * *B* is called the codomain of *f*
- * A map $f \in \mathcal{A}(A, B)$ is an isomorphism if there exists a map $g \in \mathcal{A}(B, A)$ such that $f \circ g = 1_B$ and $f \circ g = 1_A$
- * if $f \in \mathcal{A}(A, B)$ is an isomorphism, we say that A and B are isomorphic and write $A \cong B$
- * a diagram commutes means that any two maps with the same domain and codomain are equal.

The following diagram commutes means $h = g \circ f$.

» Examples of categories

- * There is a category with no objects (and no maps)
- * (one object and one map 1_{\bullet})
- $* \quad \bullet \quad \longrightarrow \quad \bullet \quad (two \ objects \ and \ one \ map \ between \ them)$
- * Set: sets and functions
- * Grp: groups and group homomorphisms
- * Ring: rings and ring homomorphisms
- * Vect_k: vector spaces over the field k and linear maps
- * Top: topological spaces and continuous maps

» Opposite category

Every category \mathscr{A} has an opposite category \mathscr{A}^{op} obtained from \mathscr{A} by reversing its arrows:

- $* \,\, {\mathscr A}$ and ${\mathscr A}^{{\scriptscriptstyle {\rm OP}}}$ have the same objects and identity elements
- * for any two objects $A, B, \mathcal{A}^{op}(B, A) = \mathcal{A}(A, B)$.

Opposite group

If \mathcal{G} denotes the group *G* seen as a category (one object and isomorphic maps to and from that object), then \mathcal{G}^{op} is the opposite group of *G*.

Functors

» Product category

Given categories ${\mathscr A}$ and ${\mathscr B},$ a product category ${\mathscr A}\times {\mathscr B}$ is defined by

- $* \operatorname{ob}(\mathscr{A} \times \mathscr{B}) = \operatorname{ob}(\mathscr{A}) \times \operatorname{ob}(\mathscr{B}),$
- $* \ (\mathscr{A} \times \mathscr{B})((A, B), (A', B')) = \mathscr{A}(A, A') \times \mathscr{B}(B, B').$

The notation $ob(\mathscr{A}) \times ob(\mathscr{B})$ is simply a shorthand notation to say that objects of the product category is a pair of objects. Likewise for maps.

» Functor

Let \mathcal{A} and \mathcal{B} be categories. A covariant functor $F: \mathcal{A} \to \mathcal{B}$ consists of

- * a mapping from ob(A) to ob(B) that takes any object A of A to an object F(A) (or simply FA) of B;
- * for any two objects, A, A' of $ob(\mathcal{A})$, a mapping from $\mathcal{A}(A, A')$ to $\mathfrak{B}(F(A), F(A'))$ that takes f to F(f) (or Ff),

satisfying the following axioms

*
$$F(f' \circ f) = F(f') \circ F(f)$$
 for any $f \in \mathcal{A}(A, A')$ and $f' \in \mathcal{A}(A', A'')$,

*
$$F(1_A) = 1_{FA}$$
 for any $A \in \mathcal{A}$.

A contravariant functor from \mathscr{A} to \mathscr{B} is a functor $\mathscr{A}^{op} \to \mathscr{B}$.

Functors

» Schema

Let p_1, \ldots, p_m denote some polynomials in $A[X_1, \ldots, X_n]$ for some ring A. Let F(A) denote the set of common roots in A^n to all polynomials p_i . Then F can be regarded as (covariant) functor from Ring to Set. If f is a ring homomorphism from Ato B, and (r_1, \ldots, r_n) is an element of F(A), then $(f(r_1), \ldots, f(r_n))$ is an element of F(B). F(f) is a well defined function from A^n to B^n .

F is called the schema (associated with the considered system of polynomials).

» **Duality**

Let X be a topological space and let C(X) denote the set of real-valued functions defined on X. Let f be a continuous function from X to Y, then we define C(f) as a function from C(Y) to C(X) (notice the inversion) as the composition

$$X \xrightarrow{f} Y \xrightarrow{q} \mathbb{R}$$

Observe that $q \in C(Y)$ and that the composition defines in turn an element of C(X).

A presheaf on \mathcal{A} is a contravariant functor from \mathcal{A} to Set (like *C* above where \mathcal{A} is Top).

» Faithful / Full functor

A functor $F : \mathcal{A} \to \mathcal{B}$ is faithful (resp. full) if for each $A, A' \in \mathcal{A}$, the function

$$\mathscr{A}(\mathcal{A},\mathcal{A}') \to \mathscr{B}(\mathcal{F}(\mathcal{A}),\mathcal{F}(\mathcal{A}'))$$

 $f \mapsto \mathcal{F}(f)$

is injective (resp. surjective).

Careful. Injectivity and surjectivity are not considered on any arrows of the category \mathcal{A} but with respect to a pair of elements in \mathcal{A} .

» Subcategory

Let \mathscr{A} be a category. A subcategory \mathscr{S} of \mathscr{A} consists of a subclass of $\operatorname{ob}(\mathscr{A})$ together with, for each pair $S, S' \in \operatorname{ob}(\mathscr{S})$, a subclass of $\mathscr{A}(S, S')$ such as \mathscr{S} is closed under composition and identities. It is a full subcategory if $\mathscr{S}(S, S') = \mathscr{A}(S, S')$ for all $S, S' \in \operatorname{ob}(\mathscr{S})$.

Careful. The image of a functor $F : \mathcal{A} \to \mathcal{B}$ needs not be a subcategory of \mathcal{B} .

Natural Transformations

» Natural transformation

Let $\mathfrak{A}, \mathfrak{B}$ be categories and let $\mathfrak{A} \xrightarrow{F} \mathfrak{G} \mathfrak{B}$ be two functors. A natural transformation $\alpha : F \to G$ is a family $\left(F(A) \xrightarrow{\alpha_A} G(A)\right)_{A \in \mathfrak{A}}$ of maps in \mathfrak{B} such that for every map $A \xrightarrow{f} A'$ in \mathfrak{A} , the square

$$\begin{array}{ccc} F(A) & \xrightarrow{F(f)} & F(A') \\ & & & & \downarrow^{\alpha_{A'}} \\ G(A) & \xrightarrow{G(f)} & G(A') \end{array}$$

commutes. The maps α_A are called the components of α .

» Functor category

•
$$\mathcal{A} \xrightarrow{F}_{H} \mathcal{B}$$
 can be composed $\mathcal{A} \xrightarrow{F}_{H} \mathcal{B}$.
• $\mathcal{A} \xrightarrow{F}_{H} \mathcal{B}$, defined by $(1_F)_A = 1_{F(A)}$ for each $A \in \mathcal{A}$

For any two categories \mathscr{A} and \mathscr{B} , the functor category, denoted $[\mathscr{A}, \mathscr{B}]$ or $\mathscr{B}^{\mathscr{A}}$, is a category whose objects are the functors $\mathscr{A} \to \mathscr{B}$ and whose maps are the natural transformations between them.

» Natural isomorphism

Let \mathscr{A} and \mathscr{B} be two categories. A natural isomorphism between functors $F, G : \mathscr{A} \to \mathscr{B}$ is an isomorphism in $[\mathscr{A}, \mathscr{B}]$. We say that F and G are naturally isomorphic and write $F \cong G$.

When $F \cong G$, we also say that $F(A) \cong G(A)$ naturally in A.

» Equivalent categories

An equivalence between categories \mathscr{A} and \mathscr{B} consists of a pair of functors $\mathscr{A} \xleftarrow{F}_{G} \mathscr{B}$ together with natural isomorphisms η and ε

We say that \mathcal{A} and \mathcal{B} are equivalent, denoted $\mathcal{A} \simeq \mathcal{B}$, and that the functors *F* and *G* are equivalences.

Careful. Equivalence of categories ($\mathscr{A} \simeq \mathscr{B}$) is *weaker* than isomorphisms of categories ($\mathscr{A} \cong \mathscr{B}$) — as elements of CAT.

Remark. An equivalence of the form $\mathscr{A}^{op} \simeq \mathscr{B}$ is sometimes called a duality between \mathscr{A} and \mathscr{B} .

» Sameness

- * Equality for elements of a set
- * Isomorphism for objects of a category
- * Natural isomorphism for functors
- * Equivalence for categories

» Ajoints

Let $\mathscr{A} \xleftarrow{F}_{G} \mathscr{B}$ be categories and functors. We say that *F* is left adjoint to *G*, and *G* is right adjoint to *F*, and write $F \dashv G$ if

- 1. For every $A \in \mathcal{A}$ and $B \in \mathcal{B}$, there is a one-to-one correspondence, called an adjunction, between $\mathcal{A}(A, G(B))$ and $\mathcal{B}(F(A), B)$. <u>Notation</u>: For each $f : A \to G(B)$ (resp. $g : F(A) \to B$), its corresponding map (w.r.t. to an adjunction) is denoted by \overline{f} (resp. \overline{g}) and called *the* transpose of f (resp. g). So one has $\overline{\overline{f}} = f$ for all $f \in \mathcal{A}(A, G(B))$ and $\overline{\overline{g}} = g$ for all $g \in \mathcal{B}(F(A), B)$.
- 2. The following naturality axioms are satisfied
 - * $\overline{q \circ g} = G(q) \circ \overline{g}$ for all $g \in \mathfrak{B}(F(A), B)$ and arrow q in \mathfrak{B} with domain B
 - * $\overline{f \circ p} = \overline{f} \circ F(p)$ for all $f \in \mathcal{A}(A, G(B))$ and arrow p in \mathcal{A} with codomain A

» Example: "Currification"

A map $A \times B \rightarrow C$ can be seen as a map $A \rightarrow C^B$ (or $A \rightarrow (B \rightarrow C)$)

Fix an object *B* in **Set** the category of sets. Consider the two following functors (cf. next slides for the formal definitions of product and exponentiation of sets.)

 $\begin{array}{cc} -\times B: \mathsf{Set} \to \mathsf{Set} & (-)^B: \mathsf{Set} \to \mathsf{Set} \\ A \mapsto A \times B & C \mapsto C^B \\ \mathsf{Then} \; (-\times B) \; \mathsf{is} \; \mathsf{left} \; \mathsf{adjoint} \; \mathsf{to} \; (-)^B: \end{array}$

Set
$$\xrightarrow[(-)^B]{}$$
 Set

» Product

Let \mathcal{A} be a category and $A, B \in \mathcal{A}$. A product of A and B consists of an object $A \times B$ and maps π , π' called projections

$$A \xleftarrow{\pi} A \times B \xrightarrow{\pi'} B$$

such that for all P, f, g satisfying

$$A \xleftarrow{f} P \xrightarrow{g} B$$

there is a unique map $p : P \rightarrow A \times B$, denoted (f, g), making the following diagram commute

Natural Transformations

» Exponential

'Function Set'

Let \mathcal{A} be a category and $A, B \in \mathcal{A}$. An Exponential from A to B consists of an object F (often denoted B^A) together with a map (called sometimes evaluation)

$$F \times A \xrightarrow{\varepsilon} B$$

such that for all objects X and maps satisfying

$$X \times A \xrightarrow{q} B$$

there is a unique map $\bar{q}: X \to F$ making the following diagram commute ($\varepsilon \circ (\bar{q} \times 1_B) = q$)

» Ilnit/Counit

Let $\mathscr{A} \xrightarrow{F} \mathscr{B}$. Let $A \in \mathscr{A}$ and $B \in \mathscr{B}$. Fix an adjunction between $\mathcal{A}(A, G(B))$ and $\mathfrak{B}(F(A), B)$. For every $A \in \mathcal{A}$, the transpose of $1_{F(A)}$ defines a map $\eta_A : A \to GF(A)$ and, dually, for every $B \in \mathfrak{B}$, the transpose of $1_{G(B)}$ defines a map $\varepsilon_B : FG(B) \to B.$

These maps define natural transformations

$$\mathscr{A} \underbrace{ \bigcup_{G \in F}^{1_{\mathscr{A}}}}_{\mathcal{G} \circ F} \mathscr{A} \quad , \qquad \mathscr{B} \underbrace{ \bigcup_{F \circ G}}_{1_{\mathscr{B}}} \mathscr{B} \quad ,$$

called unit and counit of the adjunction respectively.

Functors

Natural Transformations

» Horizontal composition

Special case

» Triangle identities

Lemma

Given an adjunction $F \dashv G$ with unit η and counit ε , the following diagrams, called triangle identities commute

Functors

» Transposes via unit/counit

Lemma

Let $\mathscr{A} \xrightarrow[G]{} \stackrel{F}{\underset{G}{\longrightarrow}} \mathscr{B}$ be an adjunction with unit η and counit ε . Then

$$\overline{g} = G(g) \circ \eta_A$$
 and $\overline{f} = \varepsilon_B \circ F(f)$,

for any $g: F(A) \rightarrow B$ and $f: A \rightarrow G(B)$.

An adjunction is fully defined by its unit and counit.

Functors

» Adjoints via unit/counit

Theorem

Let $\mathscr{A} \xrightarrow[G]{} \mathscr{B}$ be categories and functors. Then $F \dashv G$ if and only if there exist natural transformations $\eta : 1_{\mathscr{A}} \to GF$ and $\varepsilon : FG \to 1_{\mathscr{B}}$ satisfying the triangle identities.

This is an equivalent definition for adjoints.

» References

 * Tom Leinster. Basic Category Theory. arXiv version. 2016